您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于评分相似性的群稀疏矩阵分解推荐算法

大小:0.73 MB 人气: 2017-12-05 需要积分:3

  如何提高系统的推荐精度,是当前推荐系统面临的重要问题。对矩阵分解模型进行了研究,针对评分数据的群结构性问题,提出了一种基于评分相似性的群稀疏矩阵分解模型( SSMF-GS)。首先,根据用户的评分行为对评分数据矩阵进行分群,获得相似用户群评分矩阵;然后,通过SSMF-GS算法对相似用户群评分矩阵进行群稀疏矩阵分解;最后,采用交替优化算法对模型进行求解。所提模型可以筛选出不同用户群的偏好潜在项目特征,提升了潜在特征的可解释性。在GroupLens网站上提供的MovieLens数据集上进行仿真实验,实验结果表明,所提算法可以显著提高预测精度,平均绝对误差(MAE)及均方根误差(RMSE)指标均表现出良好的性能。

基于评分相似性的群稀疏矩阵分解推荐算法

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!