您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于支持度和增比率的改进关联分类算法

大小:0.46 MB 人气: 2017-12-05 需要积分:2

  关联分类是一项重要的分类技术,目前普遍采用基于支持度和置信度的关联分类模式。但是,用支持度度量项集的分类能力过于简单,且置信度不能度量项集与类的相关性,所以利用支持度和置信度容易产生质量不好的规则。提出改进的关联分类算法 ACSER。ACSER不仅考虑项集到本类的支持度,也考虑项集到补类的支持度。首先,提取频繁增比模式作为分类候选规则集;其次,利用置信度和增比率度量规则的强度,按照其强度进行排序和剪枝;最后,选择足条最优的规则进行预测。在1 6个UCI数据集上的实验结果表明,改进的分类算法ACSER与传统的分类算法相比有更高的分类准确率。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!