三种用于垃圾网页检测的随机欠采样集成分类器
大小:0.98 MB 人气: 2017-12-06 需要积分:3
标签:分类器(13141)
针对垃圾网页检测过程中轻微的不平衡分类问题,提出三种随机欠采样集成分类器算法,分别为一次不放回随机欠采样( RUS-once)、多次不放回随机欠采样(RUS-multiple)和有放回随机欠采样(RUS-replacement)算法。首先使用其中一种随机欠采样技术将训练样本集转换成平衡样本集,然后对每个平衡样本集使用分类回归树( CART)分类器算法进行分类,最后采用简单投票法构建集成分类器对测试样本进行分类。实验表明,三种随机欠采样集成分类器均取得了良好的分类效果,其中RUS-multiple和RUS-replacement比RUS-once的分类效果更好。与CART及其Bagging和Adaboost集成分类器相比,在WEBSPAM UK-2006数据集上,RUS-multiple和RUS-replacement方法的AUC指标值提高了10%左右,在WEBSPAM UK-2007数据集上,提高了25%左右;与其他最优研究结果相比,RUS-multiple和RUS-replacement方法在AUC指标上能达到最优分类结果。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%