您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于MapReduce数据流相似性搜索并行算法

大小:0.92 MB 人气: 2017-12-07 需要积分:2

  设计时间序列数据在Hadoop分布式文件系统(HDFS)中的有效存储方式,利用分布式缓存工具Distributed Cache将各子序列分发到Hadoop集群的计算节点上,将动态时间弯曲距离矩阵划分成多个子矩阵,采取并行迭代计算每条反对角线上子矩阵的方法,基于MapReduce编程模型,实现高效并行计算时间序列动态弯曲距离,通过改进剪裁冗余计算方法,设计实现一种数据流多模式相似性搜索并行算法。中国雪深长时间序列数据集的实验结果表明,当每条时间序列的长度达到5000以上时,并行计算动态弯曲距离所需时间少于串行计算所需时间,当每条时间序列的长度达到9000以上时,参与计算的集群节点越多,并行计算所需时间越少;当模式长度达到4000、参与计算的集群节点数达5个以上时,从数据流中并行搜索出与模式匹配的相似子序列所需时间约为串行搜索所需时间的20%。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!