基于加权空间离群点度量的随机脉冲噪声降噪算法
大小:0.87 MB 人气: 2017-12-11 需要积分:2
针对排序统计类降噪算法在随机脉冲噪声( RVIN)图像降噪过程中,对图像边缘和细节部分噪声识别不够准确以及恢复比较模糊的问题,提出了基于加权空间离群点度量( SLOM)的脉冲噪声降噪算法WSLOM-EPR。该算法以优化的空间距离差为基础,引入图像邻域均值和标准差,建立反映局部边缘细节特征的噪声检测方法,提高边缘细节处噪声的识别精度;然后以精确检测结果为基础,优化保边正则(EPR)函数,提高算法的执行效率,并增强算法保留边缘细节的能力。仿真结果显示,WSLOM-EPR算法在40%到60%噪声密度下对噪声点的误检和漏检综合表现优于对比算法,且能在两者之间保持一个较好的平衡;降噪后的峰值信噪比( PSNR)好于对比算法中的大多数情况,且边缘细节在视觉上更加清晰连续。结果表明WSLOM-EPR算法提高了噪声检测精度,有效地保持了恢复图像的边缘细节信息。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%