基于粒子滤波的蒙特卡洛定位算法
大小:0.74 MB 人气: 2017-12-14 需要积分:1
标签:
针对基于Cubature粒子滤波的蒙特卡罗定位(CMCL)算法存在的计算量大、实时处理能力较差的问题,提出一种基于自适应多提议分布粒子滤波的蒙特卡罗定位( AMPD-MCL)算法。该算法利用Cubature卡尔曼滤波和扩展卡尔曼滤波改进提议分布,融入当前观测信息,减弱粒子退化现象;重采样部分采用Kullback-Leibler距离(KLD)采样,根据粒子在状态空间的分布状况,在线调整下一次滤波迭代所需粒子数,从而减小计算量。仿真实验验证了自适应多提议分布粒子滤波( AMPD-PF)的有效性;同时在机器人操作系统(ROS)上进行实验,结果表明改进算法的平均定位精度达到19. 891 cm,定位所需粒子数稳定在60,定位时间为45. 543 s,较CMCL算法在定位精度上提高了71. 03%,时间缩短了63. 10%。实验结果表明,AMPD-MCL算法减小了定位误差,能实时在线调整粒子数,有效减少了算法计算量,提高了实时处理能力。
非常好我支持^.^
(3) 100%
不好我反对
(0) 0%