基于改进核模糊C均值类间极大化聚类MKFCM算法
大小:0.86 MB 人气: 2017-12-15 需要积分:1
传统的核聚类仅考虑了类内元素的关系而忽略了类间的关系,对边界模糊或边界存在噪声点的数据集进行聚类分析时,会造成边界点的误分问题。为解决上述问题,在核模糊C均值( KFCM)聚类算法的基础上提出了一种基于改进核模糊C均值类间极大化聚类( MKFCM)算法。该算法考虑了类内元素和类间元素的联系,引入了高维特征空间的类间极大惩罚项和调控因子,拉大类中心间的距离,使得边界处的样本得到了较好的划分。在各模拟数据集的实验中,该算法在类中心的偏移距离相对其他算法均有明显降低。在人造高斯数据集的实验中,该算法的精度(ACC)、归一化互信息(NMI)、芮氏指标(RI)指标分别提升至0.9132,0.7575,0.9138。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
基于改进核模糊C均值类间极大化聚类MKFCM算法下载
相关电子资料下载
- 基于K-means聚类算法的图像分割 1113
- 介绍一种基于最小化平方误差的聚类算法 498
- 如何在 Python 中安装和使用顶级聚类算法 415
- 10种聚类算法和Python代码4 1118
- 10种聚类算法和Python代码3 960
- 10种聚类算法和Python代码2 796
- 10种聚类算法和Python代码1 644
- YOLOv5中的autoanchor.py代码解析 1242
- 视觉新范式!COCs:将图像视为点集 636
- 10种顶流聚类算法Python实现(附完整代码) 989