基于免疫克隆特征选择和US集成的二元分类器算法
大小:0.79 MB 人气: 2017-12-15 需要积分:1
标签:分类器(13141)
为解决垃圾网页检测过程中的“维数灾难”和不平衡分类问题,提出一种基于免疫克隆特征选择和欠采样(US)集成的二元分类器算法。首先,使用欠采样技术将训练样本集大类抽样成多个与小类样本数相近的样本集,再将其分别与小类样本合并构成多个平衡的子训练样本集;然后,设计一种免疫克隆算法遴选出多个最优的特征子集;基于最优特征子集对平衡的子样本集进行投影操作,生成平衡数据集的多个视图;最后,用随机森林(RF)分类器对测试样本进行分类,采用简单投票法确定测试样本的最终类别。在WEBSPAM UK-2006数据集上的实验结果表明,该集成分类器算法应用于垃圾网页检测:与随机森林算法及其Bagging和AdaBoost集成分类器算法相比,准确率、F1测度、AUC等指标均提高11%以上;与其他最优的研究结果相比,该集成分类器算法在F1测度上提高2%,在AUC上达到最优。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%