基于平行因子分解PARAFAC的协同聚类推荐算法
大小:0.90 MB 人气: 2017-12-17 需要积分:2
标签:推荐算法(9953)
针对三元组数据内在关联性复杂的特点,提出了基于平行因子分解( PARAFAC)的协同聚类推荐算法。该算法利用PARAFAC算法对张量进行分解,挖掘多维数据实体之间的相关联系和潜在主题。首先,利用PARAFAC分解算法对三元组张量数据进行聚类;然后,基于协同聚类算法提出了三种不同方案的推荐模型,并通过实验对三种方案进行了比较,得到了最优的推荐模型;最后,将提出的协同聚类模型与基于高阶奇异值分解( HOSVD)的推荐模型进行比较。在last.fm数据集上,PARAFAC协同聚类算法比HOSVD张量分解算法在召回率和精确度上平均提高了9.8个百分点和3.7个百分点,在delicious数据集上平均提高了11.6个百分点和3.9个百分点。实验结果表明所提算法能更有效地挖掘出张量中的潜在信息和内在联系,实现高准确率和高召回率的推荐。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
基于平行因子分解PARAFAC的协同聚类推荐算法下载
相关电子资料下载
- TikTok将开发独立版推荐算法,以满足美国用户需求? 426
- 快手的短视频推荐算法(1) 782
- 详解推荐算法的架构流程 2871
- 《麻省理工科技评论》发布了最新的2021年10大突破性技术的概念 2813
- top-N推荐算法评测的影响有哪些? 1846
- 基于赛灵思FPGA的广告推荐算法Wide and deep硬件加速案例 2775
- 互联网广告推荐迎来变革,雪湖科技联合赛灵思发布推荐算法解决方案 1614
- 基于阿里云FPGA云的广告推荐算法加速器 985
- 基于深度学习的推荐算法大部分都存在不同程度的数据集缺失和源码缺失 3690
- 基于标签的推荐算法应用场景、基于标签的推荐算法原理介绍 16714