您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于软件错误报告数据集成的改进贝叶斯算法

大小:0.69 MB 人气: 2017-12-18 需要积分:1

  用户提交的软件错误报告随意性大、主观性强且内容少导致自动分类正确率不高,需要花费大量人工干预时间。随着互联网的快速发展用户提交的错误报告数量也不断增加,如何在海量数据下提高其自动分类的精确度越来越受到关注。通过改进词频一逆文档频率( TF-IDF),考虑到词条在类间和类内出现情况对文本分类的影响,提出一种基于软件错误报告数据集的改进多项式朴素贝叶斯算法,同时在Hadoop平台下使用MapReduce计算模型实现该算法的分布式版本。实验结果表明,改进的多项式朴素贝叶斯算法将F1值提高到7l%,比原算法提高了27个百分点,同时在海量数据下可以通过拓展节点的方式缩短运行时间,有较好的执行效率。

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!