一种结合多阶导数数据的视频超分辨率重建算法
大小:0.70 MB 人气: 2017-12-20 需要积分:3
传统视频超分辨率重建算法在去除噪声的同时,很难有效保持图像边缘细节信息。针对该问题,构建了一种结合多阶导数数据项和自适应正则化项的视频超分辨率重建算法。在正则化重建模型的基础上,该算法对数据项进行改进,引入能更好描述噪声统计特性的噪声多阶导数,并利用去噪效果较好的全变分( TV)和非局部均值(NLM)正则化项对视频超分辨率重建过程进行约束。此外,为了更好地保持图像细节信息,采用区域空间自适应曲率差分算法提取结构信息,从而对正则化系数进行自适应加权。实验结果表明:在噪声方差为3时,与核回归算法和聚类算法相比,该算法重建视频主观效果边缘更加锐化,局部结构更加正确、清晰;重建视频的均方误差( MSE)平均下降幅度分别为25. 75%和22. 50%;峰值信噪比(PSNR)分别平均提升了1.35 dB和1.14 dB。所提算法能够在去除噪声的同时有效保持图像的细节特征。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%