您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于失效聚集度的自适应随机测试算法

大小:0.82 MB 人气: 2017-12-20 需要积分:1

  对于现有的自适应随机测试(ART)算法针对点状失效模式普遍存在有效性和效率均比随机测试(RT)差的问题,提出一种基于失效聚集度的自适应随机测试( CLART)算法,对传统的ART-固定候选集(FSCS)、区域排除随机测试( RRT)等算法进行改进。首先,根据被测程序的输入域估计主失效聚集度,确定局部搜索区域;然后,在区域内使用传统ART算法生成若干测试用例(TC)进行测试;若未发现错误,重新选择局部区域生成TC;重复这一过程直至发现错误。仿真实验显示在点状失效模式和块状失效模式下CLART算法的有效性比FSCS算法提高约20%,效率比FSCS算法提高约60%。实验结果表明CLART算法利用多个局部区域依次搜索可以快速锁定引发失效输入分布密集高的失效区域,从而提高测试的有效性和效率。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!