基于多策略协同作用的粒子群优化MSPSO算法
大小:0.80 MB 人气: 2017-12-21 需要积分:1
针对粒子群优化(PSO)算法容易早熟收敛、在进化后期收敛精度低的缺点,提出了一种基于多策略协同作用的粒子群优化( MSPSO)算法。首先,设定一个概率阈值为0.3,在粒子迭代过程中,如果随机生成的概率值小于阈值,则采用对当前种群中的最优个体进行反向学习并生成其反向解,以提高算法的收敛速度和收敛精度;否则,算法执行对粒子的位置进行高斯变异策略,以增强种群的多样性;其次,提出一种将柯西分布的比例参数进行线性递减的柯西变异策略,能够产生更好的解引导粒子向最优解空间运动;最后,在8个标准测试函数上进行仿真测试,MSPSO算法在Rosenbrock、Schwefel‘s P2. 22、Rotated Ackley、Quadric Noise、Ackley函数上收敛的平均值分别为1.68E+ 01、2.36E -283、8.88E -16、2.78E - 05、8.88E - 16,在Sphere、G riewank和Rastrigin函数上收敛达到最优解0,优于高斯扰动粒子群优化( GDPSO)算法、基于柯西变异的反向学习粒子群优化(GOPSO)算法。结果表明,所提出的算法收敛精度高,能避免粒子陷入局部最优。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%