一种改进的旋转森林算法的网络流量分类
大小:0.60 MB 人气: 2017-12-27 需要积分:1
针对不平衡网络流量分类精度不高的问题,在旋转森林算法的基础上结合Bagging算法的Bootstrap抽样和基于分类精度排序的基分类器选择算法,提出一种改进的旋转森林算法。首先,对原始训练集按特征进行子集划分并分别使用Bagging进行样本抽样,通过主成分分析(PCA)生成主成分系数矩阵;然后,在原始训练集和主成分系数矩阵的基础上进行特征转换,生成新的训练子集,再次使用Bagging对子集进行抽样,提升训练集的差异性,并使用训练子集训练C4.5基分类器;最后,使用测试集评价基分类器,依据总体分类精度进行排序筛选,保留分类精度较高的分类器并生成一致分类结果。在不平衡网络流量数据集上进行测试实验,依据准确率和召回率两个标准对C4.5、Bagging、旋转森林和改进的旋转森林四种算法评价,依据模型训练时间和测试时间评价四种算法的时间效率。实验结果表明改进的旋转森林算法对万维网( WWW)协议、Mail协议、Attack协议、对等网(P2P)协议的分类准确度达到99. 5%以上,召回率也高于旋转森林、Bagging.C4.5三种算法,可用于网络入侵取证、维护网络安全、提升网络服务质量。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
一种改进的旋转森林算法的网络流量分类下载
相关电子资料下载
- 人工神经网络模型的分类有哪些 134
- 一文快速了解RFID技术的构成及分类 109
- 车载无线技术分类介绍 411
- 机器视觉光源的作用、分类及实际应用 118
- 神经元的分类包括哪些 234
- 卷积神经网络分类方法有哪些 102
- cnn卷积神经网络分类有哪些 106
- 什么神经网络模型适合做分类 114
- 卷积神经网络在文本分类领域的应用 152
- 风华贴片电容的分类详细介绍 86