您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于量化信息的分布式卡尔曼滤波算法

大小:0.75 MB 人气: 2018-01-07 需要积分:1

  针对一个无融合中心传感器网络中的状态估计问题,提出一种基于量化信息的分布式卡尔曼滤波(QDKF)算法。首先,在分布式卡尔曼滤波(DKF)中,以节点状态估计精度为加权准则,动态选取加权矩阵,使得全局估计误差的协方差最小;然后,进一步考虑了网络带宽受限制的情况,在DKF算法中加入均匀量化器,节点之间通信使用量化后的信息,以减少网络通信的带宽需求。QDKF算法仿真采用了8 bit的均匀量化器,与Metropolis加权法和最大度加权法相比,动态加权法的状态估计均方根误差分别降低了25%和27. 33%。实验结果表明,采用动态加权法的QDKF算法能提高系统的状态估计精度,减少带宽需求,适用于网络通信受限制的应用场合。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!