您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

稀疏数据中基于高斯混合模型的位置推荐框架

大小:1.58 MB 人气: 2018-01-17 需要积分:3

  协同过滤和概率模型是位置推荐中的常用方法,但前者没有考虑用户的移动模式,后者也难以用于稀疏数据集。针对上述问题,面向稀疏数据构建基于高斯混合模型的位置推荐框架GMMSD。按时间段划分用户签到的历史数据,通过数据预处理获取用户一区域矩阵,并利用矩阵分解算法提高稀疏数据的推荐准确度,学习高斯混合模型以预测用户出现在不同区域的概率分布,从而进行位置推荐。在真实数据集上的实验结果表明,GMMSD可以有效提高稀疏数据中位置推荐的准确度。

稀疏数据中基于高斯混合模型的位置推荐框架

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!