您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

分层抽样的K近邻分类加速算法

大小:3.04 MB 人气: 2018-02-27 需要积分:2

  k近邻(k nearest neighbor,kNN)分类作为数据挖掘中最典型的算法之一,以较高的泛化性能以及充足的理论基础被广泛应用。然而kNN在测试时需要计算待识别实例与所有训练实例之间的距离,以至于在面对大规模数据时需要大量的时间。为此,提出一种基于分层抽样的kNN加速算法(KNN based on stratified sampling,SS_kNN)。首先将训练实例所在的空间划分为若干个实例个数相等的区域,然后从每个区域内抽取实例,最后判定待识别实例落入划分区域中的哪一个,并从此区域以及相邻区域抽取的实例中寻找其K个近邻。与原始kNN算法以及基于随机抽样的kNN算法相比,SSkNN算法可以获得与其相近分类精度,但将其运行速度分别提高大约399倍和16倍。

分层抽样的K近邻分类加速算法

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!