Wi-Fi MIMO 802.11n的优势和面临的挑战

来源:litepoint 作者:litepoint2013年07月09日 18:10
[导读] 多年来,多径接收是一项避免使用或者用来作补偿使用的技术,这是因为当电磁波以直接或间接路径到达接收天线时,它们相位不同,并且会互相干扰。在模拟电视时代,多径信号会产生图像重影;同时无线电信号也会受到信号衰落和信噪比变化的影响。

        多年来,多径接收是一项避免使用或者用来作补偿使用的技术,这是因为当电磁波以直接或间接路径到达接收天线时,它们相位不同,并且会互相干扰。在模拟电视时代,多径信号会产生图像重影;同时无线电信号也会受到信号衰落和信噪比变化的影响。

  然而,在不增加信号带宽的前提下,依靠多径技术来提高数据流量在实际应用中确是一种可行的方案——路径越多,流量越大,被称之为多进/多出,或者 MIMO。可以这样理解:在相同的频带上,利用独立的多个发射机和多个天线同时发送不同的数据流。在接收端,利用多个接收天线接收多个通过直接或间接路径过来的复合信号。然后,采用先进的数字信号处理(DSP)技术,解调出不同的数据流上的数据(图1)。

  图1在MIMO系统中数据被分离成多个数据流通过多个发射机和多个天线进行传输这些多径复合信号在接收端被分别接收再转换成分离的数据流然后这些数据流又被复合成原信号

  理论上,如果数据以80Mbps的流量进入MIMO系统,它可以被分为两个40Mbps的数据流,或者4个20Mbps的数据流,这2个或者4个数据流通过MIMO以较低的速度并行地发送,然后在接收端DSP解码后进行复合。因而,这看起来就像是一个80Mbps的数据流在一个带宽仅适合传输 20Mbps或者40Mbps的信道中被传输。换句话说,我们在同一信道传输了更多的比特数。事实上,我们并没有传输翻番或者翻两番的数据流量,这确实增加了信道的利用率。

  不劳而获?

  更高的信道利用率不是平白无故的得来的,我们付出的代价是增加了复杂的MIMO设备,必须使用多个发射机,接收机和天线。此外,为了解码接收到的多径信号所组成的复合信号我们需增加DSP的功能。

  但是 ,此项技术不只是简单的增加发射机,接收机和天线。因为每增加一个,相互之间的潜在干扰就会增加。例如:当两个或者多个发射机同时发送数据时很可能会产生一定的串扰,除非它们有很好的隔离度。同样,多个接收机也很有可能会产生本振信号相互泄漏,除非它们之间隔离得非常好。

  因此,电路板的布局变得非常重要,不仅要减少相互之间的干扰,还要尽量避免群时延,相位不平衡等问题,同时,器件选型也变得更加复杂,因为我们必须保证发现并排除所有能引起干扰的可能。这样的话就必须投入大量时间去验证,势必会增加总的开发成本。

  Wi-Fi MIMO-802.11n 草案2.0

  迄今为止,Wi-Fi MIMO 还没有得到802.11n标准的认可。因此,现有的大多数Wi-Fi MIMO设备被冠以“草案n认证”,这表明它们符合802.11n草案的规范(虽然期间还有其他过渡型草案,但是认证还是基于草案2.0的)。最终认可时间预计会在2009年。然而,最终认可的标准和草案2.0相比应该不会有太大的出入,因此一些公司已经提供“草案n”的产品

  到目前为止,在与802.11a,b和 g的兼容性方面,还没有出现多大的问题;由于最初的一系列产品是针对消费者而非企业用户,而消费者对标准认可基本不关心,他们更希望的是Wi-Fi的覆盖范围和传输速度的改善。目前为止,这对企业来说,还是有相当风险的。

  IEEE 802.11a和g在空中的额定速率是54Mbps,在实际使用中的速率是25Mbps(如:在MAC服务接入点的实际速率)。802.11n在空气中的额定传输速率是200Mbps,实际上大约可以达到100Mbps。4倍速率提升的预期,足以让基于802.11n标准的无线连接能够轻松应付各类应用,对边缘服务来说,最好情况下能以802.11a和g来传输(如:视频流)。

  开发测试的挑战

  如前所述,开发802.11n设备不是简单的复制发射机,接收机和天线。每增加一个发射机/接收机,它们相互之间的干扰就会增加。这意味着,开发测试必须能够识别在哪些地方,干扰会导致信号与802.11n标准相悖。

  图2在一个发射机输出端和另一个发射机的输入端产生的耦合现象会恶化第二个发射机的发射信号

  例如,如果一个天线发射的信号耦合到另一个发射机的输入端,这将使第二个发射机的发射信号恶化(图2)。

  图3接收到的信号被耦合到压控振荡器导致频率的不稳定

12下一页全文

相关阅读

发表评论
技术交流、积极发言! 发表评请遵守相关规定。

0 条评论