0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

IGBT驱动要点及保护电路分析过程结果

BhHn_Mic 来源:陈年丽 2019-07-26 09:46 次阅读

绝缘门极双极型晶体管(Isolated Gate Bipolar Transistor,简称IGBT),也称绝缘门极晶体管。由于IGBT内具有寄生晶闸管,所以也可称作绝缘门极晶闸管,它是上世纪80年代中期发展起来的一种新型复合器件。由于它将MOSFET和GTR的优点集于一身,既具有输入阻抗高、速度快、热稳定性好和驱动电路简单的优点,又有通态电压低、耐压高的优点,因此技术发展很快,倍受厂商和用户欢迎。在电机驱动、中频和开关电源以及要求快速、低损耗的领域,IGBT有取代MOSFET和GTR的趋势。但在IGBT实际应用中,要重点考虑的一个问题是IGBT的保护问题,在此自行设计了一种简单又适用的保护电路,并取得了很好的效果。

IGBT驱动要点

1IGBT栅极驱动电压Uge

IGBT的驱动条件与IGBT的特性密切相关。在设计栅极驱动电路时,当栅极驱动电压大于阈值电压时IGBT即可开通,一般情况下阈值电压Uge(th)=5~6V。这样即可以使IGBT在开通时完全饱和,通态损耗最小,又可以限制短路电流。因此栅极驱动电压Uge需要选择一个合适的数值,以保证IGBT的可靠运行。栅极电压增高时,有利于减小IGBT的开通损耗和导通损耗,但同时将使IGBT能承受的短路时间变短(10μs以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般Uge可选择在-10~+15V之间,关断电压为-10V,开通电压为+15V。因此通常选取栅极驱动电压Uge≥D×Uge(th),系数D=1.5、2、2.5、3。当阈值电压Uge(th)为6V时,栅极驱动电压Uge则分别为9V、12V、15V、18V,12V最佳。使IGBT在关断时,栅极加负偏压,以提高抗负载短路能力和du/dt引起的误触发等问题。

2IGBT栅极电阻Rg

选择适当的栅极串联电阻Rg对IGBT驱动相当重要。当Rg增加时,将使IGBT的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反向恢复过电压减小,同时减少EMI的影响。而门极电阻减少,则又使di/dt增大,可能引发IGBT误导通,当Rg减小时,减小IGBT开关时间,减小开关损耗;但Rg太小时,可导致g、e之间振荡,IGBT集电极di/dt增加,引起IGBT集电极尖峰电压,使IGBT损坏。因此,应根据IGBT电流容量和电压额定值及开关频率选取Rg值,如10Ω、15Ω、27Ω等,建议g、e之间并联数值为10kΩ左右的Rge,以防止栅极损坏。

保护电路

1设计思路[1]

在负载持续短路时,这些驱动集成电路有可能使IGBT重复承受数毫秒的大电流脉冲。短路期间强大的电流脉冲威胁IGBT的安全并有可能导致其不可恢复性损坏。因此一旦发生负载短路,必须尽可能地减少IGBT短路过电流的工作时间,这就必须通过外电路闭锁输入驱动信号,防止IGBT连续通过大电流脉冲。单靠驱动集成电路本身不足以完全保护IGBT,必须外加辅助保护电路切断输入驱动信号。

2硬件保护电路组成

本文通过LM358和LS373能有效地实现过流和短路保护功能。其电路主要由一个LM358、两个二极管、一个地址锁存器LS373、两个参考电压等组成。

1

LS373芯片的特性

LS373为三态输出的八D透明锁存器,其外部管脚及逻辑如图1所示。

LS373的输出端1Q~8Q可直接与总线相连。当三态允许控制端OE为低电平时,1Q~8Q为正常逻辑状态,可用来驱动负载或总线。当OE为高电平时,1Q~8Q呈高阻态,既不驱动总线,也不是总线的负载,但锁存器内部的逻辑操作不受影响。当锁存允许端LE为高电平时,Q随数据D而变。当LE为低电平时,Q被锁存在已建立的数据电平。当LE端施密特触发器的输入具有滞后作用,可使交流和直流噪声抗扰度被改善400mV。引出端符号:1D~8D为数据输入端,OE三态允许控制端(低电平有效),LE锁存允许端,1Q~8Q为输出端。真值表如表1所示。

2

硬件保护电路分析

连接方法如图2所示,

也称为双限比较器。参考电压为+5V和-5V,当输入电压UINPUT<-5V时,运放LM358输出-15V,这时二极管VD1截止,VD2导通,Uin=12.96V,UDIR=5V,根据真值表,LS373的输出为高阻态,从硬件上封锁PWM的输出,UDIR=0V,光耦导通(见图3),

F为低电平;当输入电压为-5V+5V时,运放LM358输出+12.95V,VD1导通,VD2截止,Uin=12.96V,UDIR=5V,同理,LS373的输出为高阻态,封锁了PWM。UDIR=0V,光耦导通,F为低电平。

3

软件保护电路分析

通常采取的过流保护措施有硬件关断和软件关断两种。硬件关断指在检测出过流和短路信号时,LS373的1脚输出为高电平,迅速封锁栅极信号,使IGBT关断。但是,由于硬件关断一旦检测到过流信号就关断,使得PWM11~PWM66输出不断地发生跳变,很容易发生误动作。为了提高保护电路的抗误动作能力,在硬件短路保护信号之后添加一个软件封锁,即通过F信号来实现(见图3)。当UDIR

为高电平时,LS373直接封锁PWM11~PWM66的信号,实现硬件封锁信号,同时UDRIVE变为低电平,将F信号拉低,通过DSP软件来封锁PWM1~PWM6信号,从而起到软件保护的作用。

3保护过程

信号变化过程如图4和图5所示,

当电压信号-5V+5V时,UDIR=5V,硬件保护,封锁PWM,同时,UDIRVE=0V,光耦导通,F为低电平,DSP将从软件上封锁PWM。随着电流的减小,电压信号UINPUT将小于+5V,硬件保护UDIR=0V,但此时软件将一直封锁PWM直到重新上电。同理,当电压信号UINPUT<-5V时,UDIR=5V,硬件保护,封锁PWM,同时,UDIRVE=0V,光耦导通,F为低电平,DSP将从软件上封锁PWM。随着电流的减小,电压信号UINPUT将小于+5V,硬件保护UDIR=0V,这种过流保护,一旦动作后,要通过复位才能恢复正常作。

实验结果

图6显示的是当电流信号使电压为+4.9V,即小于参考电压5V时,没有硬件保护,F信号也为高电平,PWM输出的电压为15V左右,即为IGBT的驱动电压。图7显示的是当电流信号使电压为5.1V,即大于参考电压5V时,UDIR=5V,硬件电路保护,F信号为低电平,封锁PWM,使得PWM输出的电压为0V,即IGBT无驱动电压。实验表明:当实际电压为小于-5V时,IGBT驱动电压也为0V。因此,利用LM358和LS373地址所存器能有效地保护IGBT。

结束语

(1)通过LS373封锁PWM脉冲实现硬件保护,能够对IGBT实施可靠保护,延长IGBT的使用寿命。

(2)在硬件保护的同时,通过三极管和光耦将F信号拉低,实现DSP软件保护,提高了IGBT保护可靠性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路
    +关注

    关注

    172

    文章

    5837

    浏览量

    171878
  • IGBT驱动
    +关注

    关注

    8

    文章

    51

    浏览量

    18694

原文标题:IGBT驱动与保护电路的应用研究

文章出处:【微信号:Micro_Grid,微信公众号:电力电子技术与新能源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    IGBT驱动和过流保护电路的研究

    状态直接影响整机的性能,所以合理的驱动电路对整机显得很重要,但是如果控制不当,它很容易损坏,其中一种就是发生过流而使IGBT损坏,本文主要研究了IGBT
    发表于 07-18 14:54

    IGBT驱动电路

    `IGBT驱动电路  本文在分析IGBT驱动条件的基础上介绍了几种常见的
    发表于 09-09 12:22

    IGBT在固态电源中是如何保护电路的?且看IGBT损坏机理分析

    似)。在图 1 所示的电路中,在市电电源 Us 的正半周期,将 Ug2.4 所示的高频驱动信号加在下半桥两只 IGBT 的栅极上,得到管压降波形 UT2D。其工作过程
    发表于 12-25 17:41

    IGBT损坏机理分析保护电路设计原理分析

    似)。在图 1 所示的电路中,在市电电源 Us 的正半周期,将 Ug2.4 所示的高频驱动信号加在下半桥两只 IGBT 的栅极上,得到管压降波形 UT2D。其工作过程
    发表于 12-27 08:30

    IGBT驱动保护电路研究

    IGBT驱动保护电路研究:对电力电子功率器件IGBT的开关特性、驱动波形、功率、布线、隔离等
    发表于 05-31 12:33 64次下载

    IGBT驱动保护电路的设计与测试

    本文在分析IGBT的动态开关特性和过流状态下的电气特性的基础上,通过对常规的IGBT推挽驱动电路进行改进,得到了具有良好过流
    发表于 10-15 11:12 78次下载

    IGBT驱动及短路保护电路M57959L研究

    根据集电极退饱和检测短路原理及IGBT 的短路安全工作区(SCSOA) 限制,设计出具有较完善性能的IGBT 短路保护电路分析与实验
    发表于 10-28 10:56 118次下载

    IGBT驱动和过流保护电路的研究

    谈论了IGBT驱动电路基本要求和过流保护分析,提供了IGBT
    发表于 08-08 10:16 428次下载

    IGBT高压大功率驱动保护电路的应用及原理

    IGBT高压大功率驱动保护电路的应用及原理 通过对功率器件IGBT的工作特性分析
    发表于 10-09 09:56 2347次阅读
    <b class='flag-5'>IGBT</b>高压大功率<b class='flag-5'>驱动</b>和<b class='flag-5'>保护</b><b class='flag-5'>电路</b>的应用及原理

    IGBT驱动保护电路的改良设计

    在实际应用电力电子技术过程中,绝缘栅双极晶体管( IGBT ) 驱动保护电路的合理设计应根据具体器件的特性,选择合适的参数,使之实现最优
    发表于 08-17 15:54 113次下载
    <b class='flag-5'>IGBT</b><b class='flag-5'>驱动</b><b class='flag-5'>保护</b><b class='flag-5'>电路</b>的改良设计

    单管IGBT驱动保护电路设计与分析

    本文设计单管IGBT驱动保护电路设计与分析,由于其电路简单,成本低l极电压的方法可以有效地
    发表于 09-20 17:52 586次下载
    单管<b class='flag-5'>IGBT</b><b class='flag-5'>驱动</b>及<b class='flag-5'>保护</b><b class='flag-5'>电路</b>设计与<b class='flag-5'>分析</b>

    IGBT驱动和过流保护电路的研究

    IGBT驱动和过流保护电路的研究
    发表于 07-18 11:01 3073次阅读
    <b class='flag-5'>IGBT</b>的<b class='flag-5'>驱动</b>和过流<b class='flag-5'>保护</b><b class='flag-5'>电路</b>的研究

    IGBT驱动和过流保护电路的研究

    本文主要研究了IGBT驱动和短路保护问题,就其工作原理进行分析,设计出具有过流保护功能的驱动
    发表于 10-10 17:11 1883次阅读
    <b class='flag-5'>IGBT</b>的<b class='flag-5'>驱动</b>和过流<b class='flag-5'>保护</b><b class='flag-5'>电路</b>的研究

    各种IGBT驱动电路IGBT保护方法解析

    【导读】保证 IGBT 的可靠工作,驱动电路起着至关重要的作用,本文讨论IGBT驱动电路
    发表于 12-11 10:05 139次下载
    各种<b class='flag-5'>IGBT</b><b class='flag-5'>驱动</b><b class='flag-5'>电路</b>和<b class='flag-5'>IGBT</b><b class='flag-5'>保护</b>方法解析

    IGBT驱动保护电路的分类与发展趋势及保护电路分析与研究

    介绍了IGBT门极驱动保护电路的分类,分析IGBT驱动
    发表于 12-26 14:33 55次下载
    <b class='flag-5'>IGBT</b><b class='flag-5'>驱动</b><b class='flag-5'>保护</b><b class='flag-5'>电路</b>的分类与发展趋势及<b class='flag-5'>保护</b><b class='flag-5'>电路</b>的<b class='flag-5'>分析</b>与研究