0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

俞扬:人工智能不是一蹴而就,要靠厚积薄发

MqC7_CAAI_1981 来源:YXQ 2019-07-30 15:42 次阅读

2019年中国人工智能大会(Chinese Congress on Artificial Intelligence 2019,简称“CCAI 2019”)将于9月21日-22日在青岛胶州召开。南京大学人工智能学院俞扬教授将出席大会,并担任人工智能青年论坛共同主席。

俞扬在2011年博士毕业后,留校加入计算机科学与技术系、机器学习与数据挖掘研究所(LAMDA)从事教学与科研工作,主要研究领域为人工智能、机器学习、强化学习。他还入围了2018年度IEEE Intelligent Systems评选的国际“人工智能10大新星”名单,是该次国内高校唯一入选者。

近年来的爆发让人工智能成为当下最火热的风口行业之一,机器学习又是其中的先驱领域。作为这方面的专家,俞扬如何评价这一轮行业发展热潮?我们对他的观点和思考作了梳理,一起来看。

人工智能不是一蹴而就,要靠厚积薄发

2016年围棋人机大战中,DeepMind开发的AlphaGo以4:1的绝对优势,横扫人类顶级选手柯洁、韩国名将李世石,让世人对智能的力量大为惊叹。

俞扬通过拆解AlphaGo的训练“秘密”,指出了它惊艳亮相背后的成功路径。

AlphaGo的基础框架是“蒙特卡洛树搜索”。在俞扬看来,这是一种聪明的搜索算法,它可以成功避免很多无效搜索,但现在也只能达到业余棋手五段、六段的水平,远不具备与人类顶尖棋手对话交锋的实力。

在此基础上,AlphaGo引入了“机器学习”,通过学习人类历史上高手对弈的棋局数据,模拟人类走法,如果碰到没有见过的棋局,则以过往相似棋局作为参考。它虽然可以学习,但无法理解这些走法背后的玄机。此外,AlphaGo还通过“强化学习”,自己与自己对弈来提升水平。

俞扬指出,这种学习机制并不是新事物。AlphaGo涉及的所有算法部件都是现成的,“蒙特卡洛树搜索”已经发展了十年,强化学习也经历了数十年的发展。AlphaGo的突破在于,人们以卓越的工程水平实现了这些技术的结合,用成百上千的CPU和数百个显卡实现了加速计算。

AlphaGo的例子清晰地表明,人工智能近年来的成功并不是一蹴而就的,而是许多年基础研究的成果。既然我们希望人工智能的发展能够更多的造福于未来生活,就要做好长期基础研究的探索和积累,这样才能做到厚积薄发。

人工智能发展的“奇点”还未来临

人工智能在人机对弈、图像识别、语音识别等领域的进步,引发了行业内外的强烈关注和热切讨论。作为机器学习领域的专家,俞扬如何看待这些进步呢?

俞扬曾对媒体表示,虽然人工智能迎来了第3次发展热潮,但“人工智能威胁论”尚不成立,人工智能发展“奇点”还未来临。他提出,不要混淆“技术进步”和“社会进步”的概念。以蒸汽机为例,它带来了工业革命,人类生产力得到巨大提高,颠覆性地改变了人类社会的生产生活面貌,但在这一过程中,要注意原理和工艺的区别。蒸汽机的原理自诞生起就不再出现变化,人类不断改造和升级的,是蒸汽机的工艺水平。正是因为后者的不断提升,才让蒸汽机效率更高、价格更低、使用更安全方便,进而广泛普及开来,推动了社会进步。如果依照“奇点”理论来推算,蒸汽机应当迅速发展,但工程工艺的精化无法克服其原理上的先天缺陷,后来还是被内燃机所取代。今天我们在汽车、飞机上已经看不到蒸汽机的影子了。

人工智能的决定权依然在人

关于人工智能的能力边界问题 ,一直以来都存在不同的声音。人工智能有没有权限做决策?如果有,这一权限应该多大?

2018年3月,一辆自动驾驶的Uber在美国亚利桑那州撞倒了一位推着自行车的女性,致其身亡,这是自动驾驶导致行人死亡的第一例事故。事件迅速发酵,引发了关于人工智能安全问题的广泛讨论。

对此,俞扬明确表示,人工智能作为一个工具,如何使用,目前来看决定权依然在人,系统的设计者和商业(应用)的提供人员需要对此负责。他说,“我们必须清楚地知道人工智能会做出什么样的决策。对人工智能的应用范围,以及应用结果的预期,一定要有约束”。在人工智能决策相关的问题上,人类一定要慎之又慎,环境是否可控,是否经过了可理解性的测试,决定了它是否可以用在关键的场所。否则,产品就存在重大缺陷。

在高效强化学习方面的探索

俞扬介绍道机器学习可以有“机械学习”、“示教学习”、“类比学习”和“归纳学习”等多种类型。自20世纪80年代以来,归纳学习成为机器学习中被研究最多、应用最广的分支。归纳学习又分为监督学习、无监督学习和介于二者之间的弱监督学习。

强化学习可以看作是一种弱监督学习,它的数据标记需要靠自己探索来获得,往往需要经过多次决策的探索才能获得标记。

俞扬指出,强化学习在现实社会的应用还很少。当前强化学习主要有两个经典方法:一是对值函数的学习;二是策略搜索方法。但这两个方法对于样本的需求量都极其大,在真实物理环境中的应用很难得到满足。俞扬以狗举例,让狗听懂“趴下”只需半个小时,这个过程大概有二十个样本。由此可见机器强化学习的能力与生物相比,还有很大差距。即目前强化学习方法的样本利用率很低,这种低效可能来源于优化能力、方法论等多个方面的局限。

2017年,俞扬介绍过自己在提高机器强化学习能力方面的一些探索。近期,他的研究更关注模拟器的构建。俞扬认为强化学习落地的主要瓶颈在于需要大量试错,而现实环境难以承受试错代价,构建模拟器可能是突破瓶颈的一条可行途径。2017年开始,俞扬与阿里巴巴合作,成功构建了“虚拟淘宝”,模拟了购物的买家。“虚拟淘宝”模拟器用于训练强化学习,从而避免了试错代价,最终训练出的模型,直接上线测试,获得了2%的性能提升。俞扬认为“零试错”是强化学习能够得以推广应用的关键门槛,并且看好强化学习未来落地应用的前景。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1789

    文章

    46562

    浏览量

    236878
  • DeepMind
    +关注

    关注

    0

    文章

    129

    浏览量

    10808

原文标题:CCAI 2019 | 俞扬:人工智能的决定权依然在人

文章出处:【微信号:CAAI-1981,微信公众号:中国人工智能学会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    和国际合作等多个层面。这些内容让我更加认识到,在推动人工智能与能源科学融合的过程中,需要不断探索和创新,以应对各种挑战和机遇。 最后,通过阅读这章,我深刻感受到人工智能对于能源科学的重要性。
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第人工智能驱动的科学创新学习心得

    周末收到本新书,非常高兴,也非常感谢平台提供阅读机会。 这是本挺好的书,包装精美,内容详实,干活满满。 《AI for Science:人工智能驱动科学创新》这本书的第章,作为整
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家起去了解: 人工智能究竟帮科学家做了什么? 人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    利用人工智能改变 PCB 设计

    人工智能在PCB设计中展现出不可否认的潜力,但是工程师们自然对其影响有所顾虑。关于工作保障和责任的等问题常常浮现:人工智能会夺走我的工作吗?如果人工智能出错,我会被指责吗?然而,人工智能
    的头像 发表于 08-15 10:38 474次阅读
    利用<b class='flag-5'>人工智能</b>改变 PCB 设计

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    光伏行业面临着什么的机遇?

    光伏行业成本变得非常低,可以支撑全球能源的低碳转型,所以COP28 的目标具备了实现的基础。就中国而言,随着光伏大比例接入,整个电网系统安全运行面临很大的压力,所以说能源转型不是一蹴而就的。
    发表于 12-27 11:44 666次阅读

    人工智能大模型、应用场景、应用部署教程超详细资料

    人工智能是IC行业近几年的热词,目前此技术已经有很多成熟的模型和落地案例。在此跟大家做个分享,更多详细资料,请自行搜索:【展锐坦克邦】,坦克邦-智算天地集算法模型、部署说明于体,为广大客户提供了
    发表于 11-13 14:49