0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超声引导光穿过组织,用于体内深处器官和组织的无创内窥成像

MEMS 来源:YXQ 2019-08-01 17:17 次阅读

美国宾夕法尼亚州卡内基梅隆大学(Carnegie Mellon University)的研究人员开发了一种新颖的生物成像技术,利用超声波结合光学处理,可以透过皮肤和肌肉等生物组织,非侵入性地对人体器官进行成像,或能消除使用内窥镜进行侵入性视觉检查的需求。据Maysam Chamanzar和博士研究生Matteo Giuseppe Scopelliti表示,“换句话说,未来,我们就不需要利用内窥镜插入人体,到达胃部、大脑或任何其它器官进行成像检查了。”

内窥镜成像,或使用直接插入人体器官的相机来检查病症,是目前常用于诊断人体内部组织疾病的侵入性检查方法。内窥镜成像仪,或导管(或导线)末端的摄像机,通常需要通过医疗手段或手术植入,以便到达人体的深部组织,但Chamanzar及其团队开发的新技术提供了一种完全非手术且非侵入性的替代方案。

根据该实验室发表于Light:Science and Applications的论文显示,超声波可以在体内创建一种“虚拟透镜”,无需植入实物透镜。通过使用特定的超声波模型,研究人员可以有效地将光线聚焦在组织内部,使他们能够前所未有的通过无创手段拍摄体内图像。

研究人员证明,可以使用原位可重构超声干涉图案在介质中构建虚拟光学渐变折射率(GRIN)透镜,以通过介质中继图像。超声波模型改变介质的局部密度以构建垂直于光传播方向的渐变折射率图案,调制光的相位前沿,使其在介质内聚焦并有效地创建一个虚拟中继透镜。

增大组织“透明度”

生物组织会阻挡大部分的光,尤其是可见光范围内的光线。因此,目前的光学成像方法无法利用光从人体表面直接进入深部组织。不过,Chamanzar的实验室利用非侵入性超声波“提高了生物组织的透明度”,以便更多的光通过生物组织等混浊介质进行体内成像。

“能够在无需插入物理光学元件的情况下对大脑等器官进行成像,为侵入性内窥镜提供了一种重要的替代方案,”Chamanzar说,“我们使用超声波在给定的目标介质(例如各种生物组织)中构建了一个虚拟光学中继透镜。因此,生物组织变成了一种透镜,可以帮助我们捕捉更深层结构的图像。这种方案预计将彻底革新生物医学成像领域。”

超声波能够压缩和稀薄它们传播经过的介质。在压缩区域,光传播的速度比在稀薄区域慢。在本研究中,该团队证明,这种压缩和稀薄效应可用于在目标介质中构建虚拟透镜以进行光学成像。仅通过从人体外部重新配置超声波,就可以在不干扰介质的情况下移动该虚拟透镜。这使得研究人员能够对不同的目标区域进行非侵入性成像。

(a)进行光学表征的设置示意图;(b)脉冲激光被即时调制,以匹配馈送换能器正弦信号的正半周期;(c)超声换能器关闭时激光束的实验图像和(d)开启时的实验图像(fres = 832 kHz,V = 34 V);(e)、(f)用于(c)和(d)实验中相同频率和电压下的激光束光线跟踪模拟

广阔的应用前景

该论文发表的方案是一种平台化技术,可用于许多不同的应用。将来,根据需要被成像的器官,它可以以手持设备或可穿戴表面贴片的形式应用。通过将装置或贴片放置在皮肤上,临床医生可以便利地从组织内接收光信号以创建内部图像,而无需内窥镜检查所带来的不适和副作用。

该技术目前最接近的应用是脑组织的内窥成像或皮下成像,当然该技术也可以用于人体其他部位的成像。除了生物医学应用之外,该技术还可以用于机器视觉、计量学和其他工业应用中的光学成像,以实现非破坏性且可操纵的微米级物体和结构成像。

研究人员表示,可以通过改变超声波的参数来调制虚拟“透镜”的特性,使用户能够通过该技术在介质的不同深度进行“聚焦”图像。尽管已发表的论文专注于该方法对更接近表面的应用效果,但该团队尚未发现这种超声辅助光学成像方法可以达到的深度极限。

“我们的研究与传统声光方案的不同之处在于,我们利用了目标介质(可以是生物组织)本身,在光通过时影响光的传播,”Chamanzar解释说,“这种原位相互作用,有望抵消扰乱光线传播的非理想情况。”

该技术具有许多潜在临床应用,例如皮肤病诊断、大脑活动监测、以及恶性肿瘤的识别诊断和靶向和光动力疗法等。

这项研究除了对临床医学的直接影响外,还具有间接的临床应用。利用这种声光技术来监测具有大脑疾病的小鼠的活动,并选择性地刺激不同的神经通路,研究人员能够研究帕金森等疾病的相关机制,为下一代临床治疗的方案设计提供重要信息

“浑浊介质一直被认为是光学成像的障碍,”Scopelliti说,“不过,我们已经证明,这种障碍可以转化为‘我们的帮手’,帮助光线到达理想的目标。当我们用适当的模式激活超声波时,混浊介质会立即变得‘透明’。这种方案对从生物医学应用到计算机视觉等广泛领域的潜在影响着实令人兴奋。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 超声波
    +关注

    关注

    63

    文章

    3014

    浏览量

    138366
  • 光学成像
    +关注

    关注

    0

    文章

    87

    浏览量

    10082

原文标题:超声辅助光学成像,或能取代“内窥镜检查”

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    芯片上集成功能性血管化类器官的微流控平台

    的微流体装置很难反映体内流动的复杂性,需要复杂的技术设置。考虑到这些限制,我们开发了一个平台,用于建立和监测间充质和胰岛球体周围内皮网络的形成,以及由多能干细胞在芯片上培养长达30天的血管类器官。我们发现,这
    的头像 发表于 11-18 14:59 188次阅读

    使用拉曼光谱检测组织的恶性变化

    介绍 准确、快速、地检测和诊断组织中的恶性疾病是生物医学研究的重要目标。漫反射、荧光光谱和拉曼光谱等光学方法都已被研究作为实现这一目标的方法。漫反射利用组织的吸收和散射特性,特别是
    的头像 发表于 10-17 06:32 192次阅读
    使用拉曼光谱检测<b class='flag-5'>组织</b>的恶性变化

    超声波和次声波的频率范围和应用

    不同的应用,超声波的频率可以从20kHz到几兆赫兹不等。 应用领域 医学领域 超声成像(B超) :利用超声波在人体内的反射和吸收特性,形成
    的头像 发表于 09-19 16:42 2438次阅读

    超声波液位开关在脱水机中的应用

    使用。组织脱水机的工作原理是什么呢?用脱水剂把组织或细胞的水置换出来的过程称为组织脱水。据检测,人
    的头像 发表于 08-30 13:23 189次阅读
    <b class='flag-5'>超声</b>波液位开关在脱水机中的应用

    南昌大学在智能声断层成像方面取得进展

    图1. 基于扩散模型方法的有限视角下PAT重建流程图 声断层成像(PAT)是一种新型的混合医学成像技术,可以实现不同空间尺度下生物组织结构的精确
    的头像 发表于 08-28 06:24 226次阅读
    南昌大学在智能<b class='flag-5'>光</b>声断层<b class='flag-5'>成像</b>方面取得进展

    “Amisco超细微型直径2mm精密电磁导航线圈”实际产品发布

    微型线圈在内窥镜医疗介入导航中发挥着重要的作用。内窥镜是一种用于检查体内器官组织的医疗器械,通常通过口腔、鼻腔或其他自然腔道进行引导和操作
    的头像 发表于 07-19 10:14 385次阅读
    “Amisco超细微型直径2mm精密电磁导航线圈”实际产品发布

    安泰电子超声功率放大器能应用在哪些行业中

    功率放大器在医疗领域有着重要的应用。超声成像是一种常见的医学检查方法,可以用于检测人体内部的器官组织
    的头像 发表于 04-29 11:57 356次阅读
    安泰电子<b class='flag-5'>超声</b>功率放大器能应用在哪些行业中

    多尺度浸入式3D打印策略,用于人体组织器官的精准制造

    生物3D打印技术被认为是实现复杂人体组织器官构建的最有前景的技术方案之一。近年来,浸入式墨水书写技术作为生物3D打印的关键技术分支而备受瞩目。
    的头像 发表于 04-20 11:43 916次阅读

    ATA-3040C功率放大器在超声测试中的应用有哪些

    。功率放大器在超声医学成像中被用来放大和驱动超声发射器,发射高频脉冲超声波。这些超声波在不同介质中传播,并与
    的头像 发表于 04-12 14:21 456次阅读
    ATA-3040C功率放大器在<b class='flag-5'>超声</b>测试中的应用有哪些

    用于体内超声声双模显微成像的超灵敏透明超声换能器设计

    超声成像(USI)和光学成像(OI)传感器因其简单、安全及高成本效益,非常适合传感器融合应用。
    的头像 发表于 02-29 09:47 827次阅读
    <b class='flag-5'>用于</b><b class='flag-5'>体内</b><b class='flag-5'>超声</b>和<b class='flag-5'>光</b>声双模显微<b class='flag-5'>成像</b>的超灵敏透明<b class='flag-5'>超声</b>换能器设计

    SWIR量子点活体成像技术

    图1 SWIR量子点用于下一代活体光学成像 为了了解生理和疾病中涉及的分子和细胞机制,生物医学领域的研究越来越多地以在体内非侵入性成像为主。然而,当对整个生物进行
    的头像 发表于 02-28 06:37 560次阅读
    SWIR量子点活体<b class='flag-5'>成像</b>技术

    为生物医学组织诊断设计的声传感仪器

    目前,声传感已成为一种可行的成像方式,在许多临床应用中得到证明,具有良好的结果。
    的头像 发表于 02-21 11:23 1971次阅读
    为生物医学<b class='flag-5'>组织</b>诊断设计的<b class='flag-5'>光</b>声传感仪器

    ATA-3090B功率放大器在医疗行业器官芯片中的应用

    复杂功能的同时,也面临着能耗和信号处理的挑战。本文将介绍器官芯片技术的原理,并探讨功率放大器在其中的具体应用。 器官芯片是一种模拟人体器官组织的微型芯片,可
    的头像 发表于 01-24 17:49 380次阅读
    ATA-3090B功率放大器在医疗行业<b class='flag-5'>器官</b>芯片中的应用

    晶体知识:加热时的组织与性能的变化

    冷变形金属被加热到适当温度时,在变形组织内部新的畸变的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。
    的头像 发表于 01-06 10:53 1161次阅读
    晶体知识:加热时的<b class='flag-5'>组织</b>与性能的变化

    用于生物组织-电子接口的水响应性自适应可拉伸电极

    柔性可拉伸电极是监测人体电生理信息的核心工具。由于生物组织柔软,形状和尺寸各不相同,柔性可拉伸电极与生物组织的接口无法像硬件电路集成那样标准化,因此亟须开发柔性电极与复杂生物组织的标准化快速集成方法。
    的头像 发表于 12-28 17:30 1048次阅读
    <b class='flag-5'>用于</b>生物<b class='flag-5'>组织</b>-电子接口的水响应性自适应可拉伸电极