0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于自有芯片的性能分析和应用

lC49_半导体 来源:djl 作者:nextplatform 2019-08-30 15:14 次阅读

近几年来,无论是国外的谷歌、Facebook,还是国内的百度、阿里巴巴,我们可以看到全球的大型互联网公司都开始涉足芯片设计领域了,且这股趋势看起来有蔓延之势。究竟是什么原因推动了这种情况的产生?日前,国外媒体The next platform写了一篇文章,阐述了这种现象产生的原因。

据我们粗略统计得知,云巨头亚马逊、阿里巴巴、百度、Facebook、谷歌和微软都在设计自己的AI加速器芯片。究竟这是当下云行业的一种潮流还是短期现象?相信一千个人有一千个看法。但在我们看来,为特定任务设计定制芯片将成为云产业的主流,届时处理器网络交换机、AI加速器等领域将会受到深刻的影响。大胆点的观点认为,该领域内的大多数芯片市场将不能限免。

纵观整个集成电路产业链,在一系列新的技术和经济因素推动下,传统的芯片设计和制造模式正在破坏,云巨头涉足AI芯片设计只是大规模定制芯片影响当前集成电路供应链的冰山一角,更多的可能性正在发生。但造成这种现象的原因并不止一个,很多因素的同时发生导致了今日的结果:

1)摩尔定律的死亡;

2)基于多芯片模块(MCM)和系统级封装(SIP)的新架构方向;

3)芯片设计工具逐渐成熟为完整的开发工具链;

4)可授权IP使组装芯片变得容易;

5)多项目晶圆(MPW)使得晶圆厂有能力实现原型制造和小批量生产客户编写的内部软件框架;

6)网络巨头创造的规模,新兴的物联网巨头的影响力也渐增;

摩尔定律的死亡

虽然晶圆厂有不同的观点,但在很多人看来,摩尔定律实际上已经死了。经过了数十年的发展,现在的晶圆厂已经进入了一个瓶颈期,那就是如果继续缩小晶体管的尺寸,晶体管将变得更不可靠,且功耗会剧增。且随着晶体管的缩小,设计人员现在必须使用额外的晶体管来验证逻辑块是否能产生正确的结果。但是如果设计人员在芯片上封装太多的逻辑,那么供电和散热都会成为一项挑战。正是这种困境让芯片设计师进退两难。

这就导致了以下结果:在追求高性能的前沿应用里,对晶体管数量的需求正在爆炸,但这种爆炸却催生了更大,更热的芯片,但逻辑的速度的提升,却不会变得如想象中那么快。与此同时,较老的制造工艺(例如28纳米)却继续在发生余热,对于越来越多的应用来说,这甚至是最好的选择。

在这种情况下,就使得现有的通用芯片不能满足云服务商高性能和客制化的需求。

新的架构方向

面对上述困境,设计工程师想提高芯片性能,还有一个选择,那就是放弃推动半导体技术前进,而是转向追求新架构,达到性能提升的目的。这样的话,他们就可以退回到前一代甚至两代的工艺上进行硅片制造。这样也能够获得更小,更冷,更实惠的芯片。从现状看来,架构是硅设计的新“高地”,很多厂商早已投入其中以获取领先竞争。

例如,英特尔在其14nm工艺上,将其高端的28核服务器处理器“SKYLAKE”至强可伸缩服务器处理器的面积做到了690 mm2。虽然英特尔不再披露其晶体管数量,但作为对比,Nvida采用台积电12nm工艺制造的Volta GPU芯片在815 mm 2的硅面积上集成了210亿个晶体管。

AMD则在其Epyc服务器产品线上采用了不同的方法。Epyc是基于AMD的八核Zeppelin die设计的。每个EPYC处理器中都封装了四个由AMD proprietary 连接的四个Zeppelin die。

AMD创新的Epyc架构是不同架构和设计权衡的结果。与其他处理器设计相比,它使用了不同的互连、逻辑和存储组合。这就使得EPYC的总晶体管数量和芯片面积与英特尔和Nvidia的产品处于相同的范围,但制造成本却要低得多。AMD暗示,在大芯片里,它们的架构还有可能在在单个封装中继续实现微缩。

不同厂商在架构上的尝试,让云服务供应商看到了新的可能。

芯片设计工具日趋成熟

集成电路EDA产业到现在,eSilicon,CadenceMentor,Synopsys等供应商能够为拥有不同预算的开发者提供云托管设计平台,虚拟原型设计和验证服务,降低开发者的预算。虽然设计芯片还做不到像设计网页那样简单,但如果能够从这些厂商获得EDA和IP方面的更多支持,对于芯片新入者来说,是一个巨大的利好。尤其是如果能从他们身上获得可重复结构(repeatable structure)的支持,这更是成功的关键。

所谓的可重复结构可以是高速缓存存储器块(cache memory block,),处理器核心(processor core),存储控制器(memory controller)等部分,也就是那些你可以通过“复制”来增加总吞吐量的功能。这是扩展内存容量和处理器内核增加容量和性能的方式。

可以肯定的是,在未来,聘用足够多的设计人才去设计独特的、拥有高价值逻辑的十亿级晶体管变得几乎不可能。而可重复的结构和并行架构推动了市场需求,并能将数十亿个晶体管放在芯片上。

可授权和开源的IP模块

要获得通用或专用的可重复结构IP,有许多来源,上面提到的EDA公司是一个选择,下面介绍的公司,又是另一个选择。

Arm是数据中心可授权IP的可靠来源;

Wave Computing最近购买了MIPS,这对两者都是好兆头,因为人工智能(AI)IP在未来两年乃至十年,会成为市场关注的热点;

RISC-V旨在通过开源处理器内核使计算密集型可重复结构变得大众化。这个相对新兴的架构吸引了阿里巴巴,Cadence,谷歌,GlobalFoundries,华为,IBM,Mellanox,Mentor,高通三星知名厂商成为他们的会员。

如果你所统治的市场影足够大,那么在超现代处理器核心方面,你会有更多的选择,届时:

AMD可能会授权其Epyc服务器架构。

Arm和Qualcomm可能会授权服务器级别的Arm 64位内核。

IBM可能会授权其Power9服务器架构。

另外,在互联方向,虽然AMD凭借其Epyc MCM领先市场,但其他公司也在投资互连IP,这也让你有了更多的选择:

1)英特尔一直致力于其专有的嵌入式多芯片互连桥接(EMIB)点对点片上互连技术的开发,他们还计划将EMIB的子集作为高级接口总线(AIB)进行许可。

2)Arm也拥有各种互连设计,但对于高端基础设施市场,Arm授权其专有的CoreLink CNN(Cache Coherent Network)产品产品。熟悉设计的人都知道,Arm的CCN设计针对其较大的Arm 64位Cortex处理器进行了优化。

3)SiFive的TileLink是应用在RISC-V处理器内核上的片上互连。TileLink看起来就像是AMD的Infinity Fabric协议,而不是Intel的EMIB / AIB点对点互连。

4)USR联盟正在向其会员推进和认证其超短距(USR)系统级芯片(SoC)的互连技术

Fab变得更亲民

过去,芯片设计和制造是不可分割的,如果有任何一方对另一方不熟悉的话,合作就无法进行。但随着行业的成熟,某些设计可以与工厂分开进行,只需要大量的专业知识去“转移”。过去,有竞争力的处理器公司需要拥有自己的晶圆厂来推动更出色的性能。但去年AMD的表现证明,设计和工厂分离也可以实现出色的性能。

仅存的的挑战是降低小型设计公司的制造验证设计的价格。多项目晶圆(MPW)制造能力现已在全球范围内提供。MPW在普通晶圆上“放置”了许多不同的设计,因此原型和小批量生产就不必承担生产晶圆的全部成本。现在开发者可以从最大的晶圆厂(如GlobalFoundries,三星和台积电)以及小型和特殊工艺的专业晶圆厂(如KAST的WaferCatalyst,IMEC / Fraunhofer,Leti / CMP,MOSIS,Muse Semiconductor)获得MPW服务和价格。

MPW使小型设计公司和学术研究的开发项目能从晶圆厂获得更好的支持。大的设计客户则可以通过过往的渠道来订购大批量晶圆。

软件框架使硬件加速器成为可能

开源操作环境和应用程序代码使Web巨头能够共同设计和优化数据中心基础架构。随着芯片设计和制造进一步商品化,这些公司会发现,去体验和部署包括AI加速器在内的新处理器指令集变得越来越简单。

事实上,人工智能芯片的部署已经在进行中。大多数网络巨头都拥有内部的深度学习模型开发环境,甚至有些还开放给其他开发者访问。重要的一点是,他们当中的大多数正在进行AI芯片设计:

1)AWS已投资Apache MXNet和由亚马逊开发的用于消费设备的AI芯片;

2)百度创建了PaddlePaddle和昆仑芯片;

3)谷歌创造了TensorFlow和几代TPU芯片

4)微软创建了Cognitive Toolkit及其FPGA驱动的Brainwave附加卡;

5)腾讯创建了DI-X平台(具有专有模型和算法)和ncnn(面向移动),并与芯片厂联发科建立了合作关系;

6)阿里巴巴尚未加入软件框架竞赛,但他们已发表了许多关于深度学习架构和算法的原创研究论文,并正在开发一个神经处理单元(NPU);

在另一些云供应商中,IBM拥有Cognitive Computing和Watson服务,并与许多AI加速器公司在OpenPower方面进行合作。在社交媒体领域,Facebook推动了Caffe和Caffe2的发展。

然后有几十家初创公司推出了AI加速器芯片,而Wave Computing在购买MIPS之后,则处于领先的地位。

另外,可以确认的是,很多网络巨头也在投资量子计算,因为他们把它当做神经网络的潜在通配卡加速器,这也不是巧合。

规模效应的推动

一旦网络巨头在其遍布其全球数据中心基础架构中部署大规模的定制芯片,这意味着它会买入数十十万乃至百万计的芯片。如果每个芯片能提高几瓦的效率,那么整体效率提高则可以很容易就达到数十兆瓦。与此同时,还能解决盈利的新问题,还可以拥有更快的速度和更高的精度。

此外,网络巨头们往往有晶圆厂的关系,这就有利于其建立消费设备的定制芯片,如Google Home和Amazon Dot。如果这些厂商能够有包括AI加速器在内的多款芯片在晶圆厂生产的时候,庞大的数量将会带来很大的经济规模效应。

新趋势带来的可能影响

我们还没有看到这些融合趋势带来的真正影响。和目前AI加速器的尝试一样。这也仅仅只是一个开始。

一个对软件操作环境和深度学习建模语言有控制权的网络巨头也将进入芯片设计领域是一件很容易的事,且是一个很不错的选择。因为他们很容易就能获得最好的EDA工具、开源和可授权的IP模块,然后就可以构建原型芯片,将其布置到全国各地的服务器上。

具体来说,网络巨头进入芯片领域,不但可以定制其整数和浮点的处理器内核,还可以基于这些定制的处理器内核、定制AI加速器、定制的I / O和内存控制器等部件打造SoC。他还可以在其专有的芯片里面优化其软件性能,这在通用的大规模芯片上是很难做到的。

未来,网络巨头可能会设计完全不同的芯片。届时那些专门面向标准化操作环境和标准指令集设计的病毒将不会在这些芯片上执行。黑客需要更好的手段才能访问网络巨头的系统,尤其是这些系统还可能会定期更改的时候。

到时的数据中心,将会是一个截然不同的数据中心。

到时的芯片世界,也将会是一个不同的芯片世界。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50285

    浏览量

    421254
  • 摩尔定律
    +关注

    关注

    4

    文章

    630

    浏览量

    78909
  • 网络
    +关注

    关注

    14

    文章

    7492

    浏览量

    88564
收藏 人收藏

    评论

    相关推荐

    Linux性能分析工具大全

    今天浩道跟大家分享关于linux性能分析过程中常用到的分析工具!
    发表于 01-05 09:52 595次阅读

    关于MAX9247/MAX9218串行器/解串器芯片组的性能测试分析

    关于MAX9247/MAX9218串行器/解串器芯片组的性能测试详细解析
    发表于 04-12 06:11

    关于FPGAs的DSP性能分析

    关于FPGAs的DSP性能分析
    发表于 05-07 06:12

    常用无线收发芯片性能对比分析哪个好?

    常用无线收发芯片性能对比分析哪个好?选择收发芯片时有哪些注意事项?
    发表于 10-21 06:14

    三星拟在自有芯片家庭娱乐产品上使用Google TV

     据国外媒体报道,据知情人士称,三星电子也许会在基于其自有芯片而非基于英特尔芯片的家庭娱乐产品上使用Google TV软件。
    发表于 02-26 09:08 661次阅读

    关于以色列芯片性能分析和应用

    Mobileye 是以色列一家生产协助驾驶员在驾驶过程中保障乘客安全和减少交通事故的视觉系统的公司,成立于1999年,公司在单目视觉高级驾驶辅助系统 (ADAS) 的开发方面走在世界前列,提供芯片搭载系统和计算机视觉算法运行 DAS 客户端功能。
    的头像 发表于 08-27 10:05 5097次阅读

    关于小米处理器的性能分析和应用

    但如果回头看,小米雷军其实在2015年就看到了这一点。在2017年2月28日举行的澎湃S1发布会上,雷军表示,你们看到的这是28号发布的芯片,其实我们早在28个月前,也就是2014年10月左右,就开始了自有芯片的研发。也是在这一
    的头像 发表于 08-30 11:36 3055次阅读

    关于图像处理芯片性能分析和应用

    A 股为数不多的安防芯片优质标的。公司成立于2004年,是国内最早进入安防视频监控相关领域的企业之一,公司主要产品为安防视频监控多媒体处理芯片。其中,图像信号处理(ISP)芯片产品种类覆盖度高,2016年模拟摄像机ISP
    的头像 发表于 08-30 15:33 1.9w次阅读
    <b class='flag-5'>关于</b>图像处理<b class='flag-5'>芯片</b>的<b class='flag-5'>性能</b><b class='flag-5'>分析</b>和应用

    关于华芯通芯片“升龙”的性能分析和应用

    据了解,升龙处理器是华芯通第一代服务器芯片产品,它是兼容ARMv8架构的48核处理器芯片,采用目前国际上先进的10纳米工艺,在性能上媲美国际市场中高端服务器主流芯片产品水平。升龙处理器
    的头像 发表于 09-02 10:33 2144次阅读

    关于国产芯片性能分析和应用

    北京中科网威信息技术有限公司副总裁李源曾于去年4月表示,在网安领域,中国自主研发的申威CPU开始全面替换Intel的CPU。当年底,中科网威将会推出基于申威1621平台的自主可控万兆防火墙,这将填补我国在全自主可控安全产品中没有万兆防火墙的空白,一举打破了国外芯片对防火墙的垄断格局。
    的头像 发表于 09-02 11:02 4110次阅读

    关于阿里巴巴的芯片性能分析和应用

    Barefoot Networks开发了世界上第一个SDN芯片,这种名为Tofino的芯片比现在市场上任何其他芯片都快,以6.5Tb/s的速度处理网络数据包。这种SDN芯片是一种革命性
    的头像 发表于 09-02 14:47 3985次阅读

    关于苹果自研Mac芯片的介绍和性能分析

    而如果苹果开始自研芯片,就必然需要代工厂商,无论是哪一家代工,生产出来的产品不好则罢了,要是优势显著或者即便是性能差不多,其他厂商都可能会开始自研芯片。这对于英特尔来说并不是一个好消息。
    的头像 发表于 09-02 16:32 5805次阅读

    关于IC芯片性能分析和应用

    当然,SoC也并非是万能的。IC芯片在封装的时候,各有各的外部保护,间隔较远(才能达到减少对彼此的影响/干扰的效果)。但是将一定数量的IC封装在一起,不但会增加工程师的工作量,而且还会出现高频讯号影响其他IC的情况。
    的头像 发表于 09-02 10:38 3558次阅读

    关于数字标牌的性能分析和应用

    除了硬件得到改进,还有新的软件可以充分发挥硬件的功能,帮助改进与消费者的关系。英特尔匿名观众分析等软件能够利用芯片组强大的计算能力进行实时数据采集、实时分析消费人群数据。这款集成式软件无需拍摄视频或照片,就可检测人口统计数据,例
    的头像 发表于 09-19 10:05 1978次阅读

    聆思CSK6芯片性能与应用前景分析

    聆思CSK6芯片性能与应用前景分析
    的头像 发表于 05-15 09:11 677次阅读