1、前言
快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率,可以降低开关损耗提高效率,减小变压器及电容的尺寸降低电源体积,同时改善EMI性能,从而满足系统设计的要求,特别适合于采用超结结构的高压功率MOSFET或高压GaN器件的高功率密度快充及电源适配器。
传统的硬开关反激变换器功率开关管电压、电流应力大,变压器的漏感引起电压尖峰,必须采用无源RCD吸收电路进行箝位限制,RCD吸收电路的电阻R产生额外的功率损耗,降低系统效率,如图1所示。如果将RCD吸收电路的电阻R去掉,同时将二极管换成功率MOSFET,这样就变成了有源箝位反激变换器,通过磁化曲线在第一、第三象限交替工作,将吸收电路的电容Cc吸收的电压尖峰能量,回馈到输入电压,从而实现系统的正常工作。
图1:传统的硬开关反激变换器
图2:有源箝位反激变换器
2、有源箝位反激变换器工作原理
非连续模式DCM有源箝位反激变换器电路结构及相关波形如图2、图3所示,图中的各个元件定义如下。
Lm:变压器初级激磁电感
Lr:变压器初级漏感
Lp:变压器初级总电感,Lp=Lm+Lr
n:变压器初级和次级的匝比,n=Np/Ns
Q1:主功率开关管,DQ1、CQ1为Q1寄生体二极管和寄生输出电容
Qc:箝位开关管,DQc、CQc为Qc寄生体二极管和寄生输出电容
Do:次级输出整流二极管
Cc:箝位电容
Cr:CQ1、CQc以及其它杂散谐振电容Cto总和,Cr=CQ1+CQc+Cto
Cc1:Cc1=Cc+CQ1+Cto
Vsw:Q1的D、S两端电压
Vin:输入直流电压
Vo:输出直流电压
VC:箝位电容电压
每个开关周期根据其工作状态可以分为8个工作模式,各个工作模式的状态及等效电路图分别讨论如下。
图3:有源箝位反激变换器波形(非连续模式DCM)
(1)模式1:t0-t1
在t0时刻,Q1处于导通状态,Qc、Do保持关断状态。Lp两端所加的电压为Vin,Lp激磁,其电流从0开始,随着时间线性上升。
图4:模式1(Q1导通,Qc、Do关断)
(2)模式2:t1-t2
在t1时刻,Q1关断,Qc、Do保持关断状态。Q1关断后,Lp和Cr谐振,激磁电流对CQ1充电,对CQc放电,Vsw电压谐振上升。
图5:模式2(Q1、Qc、Do关断)
(5)模式5:t4-t5
在t4时刻,Lr的电流谐振下降到0,Do、Qc保持导通状态,Q1保持关断状态。Lr的电流下降到0后,Lr和Cc1反向谐振,就是Cc对Lr反向激磁,Cc、CQ1放电,Vsw电压、VC电压谐振下降,Lr的电流从0开始反向谐振上升,到达反向的最大值后继续谐振,其反向电流的绝对值下降,而Lm继续向输出负载释放能量,电流保持线性下降。
(6)模式6:t5-t6
在t5时刻,Lm的电流降低为0,Lm电感储存能量全部释放完毕,Do自然关断,Qc保持导通状态,Q1保持关断状态。Do关断后,输出反射电压n•Vo断开,此时,Lm又重新串联进入到谐振回路,Lp和Cc1谐振,Vc电压反向加在Lp,Cc放电对Lp反向激磁,Lm的电流过0后和Lr一起继续反向增加。
在Do关断瞬间,Lr的电流有一个高频振荡换流的过程,在这个过程中,Lr的电流快速下降到几乎为0、和Lm电流相等的过程,其中一部分能量转送到输出负载,另一部分能量转移到Lm。
(7)模式7:t6-t7
在t6时刻,关断Qc,Do、Q1保持关断状态。Qc关断后,Lp和Cr谐振,Lp的电流对CQc充电,对CQ1放电。
图11:模式7(QQc、Q1、Do关断)
在t6-t7中间某一时刻tn,对应的Vsw电压为Vin:①t6-tn期间,Lp所加电压为负,其电流谐振下降,其反向电流的绝对值进一步增加。②tn-t7期间,从tn时刻开始,Lp所加电压为正,其电流谐振上升,其反向电流的绝对值降低。
(8)模式8:t7-t0
在t7时刻,CQ1放电到0,Vsw电压为0,D1自然导通续流,将Vsw电压箝位到0,Do、Qc保持关断状态。D1导通后,Lp两端所加的电压为Vin,Lp的电流从负值线性上升,其电流绝对值进一步降低,直到降低为0,完成一个开关周期。然后,Lp的电流继续正向激磁,从0开始正向线性上升,开始下一个开关周期。
图12:模式8(D1导通,Q1、Do关断)
在t7-t0期间任一时刻,开通Q1,由于D1处于导通状态,其两端电压为0,因此Q1的开通就是零电压开通ZVS。
-
变压器
+关注
关注
159文章
7360浏览量
134910 -
变换器
+关注
关注
17文章
2087浏览量
109149 -
电源结构
+关注
关注
0文章
7浏览量
7370
发布评论请先 登录
相关推荐
评论