0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于人工智能和机器学习在医学应用的重要性和作用分析

MATLAB 来源:djl 2019-09-11 09:40 次阅读

经美国食品药品监督管理局(FDA)批准后,第一批可穿戴式数字健康监测仪目前刚刚上市,并集成在诸如智能手表之类的消费产品中。医学传感器技术的不断快速发展,使得小巧、经济且精度越来越高的生理传感器被应用在现有的可穿戴设备中。

前沿的机器学习人工智能算法正是这种转变的驱动力之一,它们能够从海量数据中提取和解读有价值的信息。这些数据往往包含噪声和不太完美的信号(比如智能手表上的心电图数据),并被各种伪信号所破坏,传统算法常常是基于规则和确切性的,因此难以妥善处理这类数据。

直到最近,解开这些传感器发出的生理信号中的秘密,并做出足够准确的决策,从而被申报监管机构接受仍然非常困难,有时甚至是不可能的。而机器学习和人工智能算法的进步,正使得工程师和科学家能够克服许多这样的挑战。

通过这篇文章,让我们一同来仔细看看生理信号处理算法的总体架构,理解背后的运算过程,并将其转化为经过数十年研究建立起来的现实中的工程技术。

机器学习算法的开发主要包括两个步骤(图 1)。

第一步是特征工程,从相应的数据集中提取特定数值/数学特征。

第二步,将提取的特征输入一个广为人知的统计分类或回归算法,如支持向量机或适当设定后的传统神经网络(训练好的模型可用于对新的数据集进行预测)。利用一个合理标记过的数据集对该模型进行迭代训练,在达到令人满意的准确度后,就可以在生产环境中作为预测引擎在新数据集上使用。

关于人工智能和机器学习在医学应用的重要性和作用分析

图 1. 典型的机器学习工作流程包括训练和测试阶段。

那么,对于心电信号的分类问题,这个工作流程是如何实现的呢?

在本案例中,我们采用了 2017 年的 PhysioNet Challenge dataset,其中使用了真实的单导联心电图数据。目标是将病人的心电信号分为四类:正常、房颤、其他心律和杂音过多。

MATLAB 中处理这个问题的整个流程和各个步骤如图 2 所示。

关于人工智能和机器学习在医学应用的重要性和作用分析

图 2. MATLAB用于开发心电信号分类的机器学习算法的工作流程。

预处理和特征工程

特征工程可能是开发一套鲁棒的机器学习算法中最难的部分。这类问题不能简单地视为“数据科学”问题,因为在探究解决方法时,掌握生物医学工程领域的专业知识,了解不同类型的生理信号和数据非常重要。

MATLAB 等工具为领域专家提供了数据分析和高级机器学习功能,使他们能够更容易地将“数据科学”功能(如高级机器学习功能)应用于他们正在解决的问题,从而专注于特征工程。在本例中,我们使用先进的小波技术对信号进行处理,以去除数据集中的噪声和渐变趋势,如呼吸伪影,并从信号中提取各种需要关注的特征。

开发分类模型

统计和机器学习工具箱中的分类学习应用程序,对于对机器学习不太熟悉的工程师和科学家来说,是一个特别有效的切入点。

一旦从信号中提取到足够多实用的相关特征,我们就能使用这个应用程序来快速探究各种分类器及其性能,从而缩小模型选择范围,用于进一步优化。这些分类器包括决策树、随机森林、支持向量机和 K 近邻(KNN)。您能够尝试并选择出能够为特征集提供最佳分类性能的策略(通常使用混淆矩阵或 AUC 等指标进行评估)。在示例中,我们只采用这种方法就快速实现了所有类别约 80% 的总体准确率(本次比赛的获奖项目得分大约为 83%)。注意,我们没有在特征工程或分类器调试上花费太多时间,因为重点是验证方法。

通常,花时间进行特征工程和分类器调试,可以显著提高分类准确度。深度学习等更先进的技术也可以应用于此类问题,其中,特征工程、特征提取和分类步骤会被整合到单一训练步骤中,然而与传统的机器学习技术相比,这种方法通常需要大很多的训练数据集,以达到期望的效果。

挑战、法规和对未来的承诺

虽然许多常见的可穿戴设备还不能完全取代 FDA 批准并经医学验证的对应设备,但所有的技术和消费趋势都明确地指向这个方向。FDA 已经开始在多方面积极发挥作用,例如简化法规,通过诸如“数字健康软件预认证计划”这样的举措,鼓励管理科学的发展,和设备开发的建模仿真等。

人们希望,将从日常可穿戴设备中收集到的人体生理信号转换为一种新型数字生物标记,以全面反映我们的健康状况。如今,这一愿景比以往任何时候都更加真实,这在很大程度上要归功于信号处理、机器学习和深度学习算法的进步。MATLAB 等工具所支持的工作流程,使医疗设备领域的专家,在即使不成为数据科学家的情况下,也能够采取并利用机器学习等数据科学技术。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47397

    浏览量

    238902
  • 机器学习
    +关注

    关注

    66

    文章

    8423

    浏览量

    132761
  • 数据分析
    +关注

    关注

    2

    文章

    1452

    浏览量

    34076
收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】+数据具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够
    发表于 12-24 00:33

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度
    发表于 11-14 16:39

    鲁棒机器学习中的重要性

    机器学习领域,模型的鲁棒是指模型面对输入数据的扰动、异常值、噪声或对抗性攻击时,仍能保持性能的能力。随着
    的头像 发表于 11-11 10:19 427次阅读

    具身智能机器学习的关系

    (如机器人、虚拟代理等)通过与物理世界或虚拟环境的交互来获得、发展和应用智能的能力。这种智能不仅包括认知和推理能力,还包括感知、运动控制和环境适应能力。具身智能强调
    的头像 发表于 10-27 10:33 407次阅读

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中
    发表于 10-24 17:22 2506次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    和国际合作等多个层面。这些内容让我更加认识到,推动人工智能与能源科学融合的过程中,需要不断探索和创新,以应对各种挑战和机遇。 最后,通过阅读这一章,我深刻感受到人工智能对于能源科学的重要性
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。阅读这一章后,我深刻感受到了人工智能技术科学领域的广泛应用潜力以及其带来的革命
    发表于 10-14 09:12

    risc-v人工智能图像处理应用前景分析

    RISC-V人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源、灵活性和低功耗等特点。以下是对RISC-V人工智能图像处理应用
    发表于 09-28 11:00

    FPGA人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行
    发表于 07-29 17:05

    NLP技术人工智能领域的重要性

    智能的桥梁,其重要性日益凸显。本文将从NLP的定义、发展历程、核心技术、应用领域以及对人工智能领域的深远影响等多个维度,深入探讨NLP技术人工智能
    的头像 发表于 07-04 16:03 571次阅读

    人工智能机器学习和深度学习是什么

    科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度
    的头像 发表于 07-03 18:22 1327次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 344次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷嵌入式
    发表于 02-26 10:17