0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于使用深度学习破译老鼠的语言分析和介绍

MATLAB 来源:djl 2019-09-11 11:40 次阅读

多年来,研究人员知道我们可以通过啮齿类动物的叫声来了解它们的感受。就像狗摇尾巴一样,某些叫声表明啮齿动物很快乐。反过来,另一些叫声表明啮齿动物有压力,甚至抑郁。

但为什么研究人员会对啮齿动物的情绪感兴趣呢?因为研究人员想了解啮齿动物对各种刺激的反应。这有助于研究人员找到帮助成瘾者或抑郁者的最佳方法。通过简单分析啮齿类动物的交流方式,研究人员可以判断治疗是否有助于减轻抑郁情绪。

图片来源:Alice Gray

由于啮齿类动物主要通过人耳听不到的超声波发声(USV)进行交流,因此很难破译老鼠吱吱的叫声。超声波发声的范围为20千赫到115千赫,而人类通常可以听到20赫到20千赫的声音。

直到现在,研究人员在研究啮齿动物的叫声时,依然严重依赖耗时的人工分析。由于发声频率很高,研究人员不得不放慢播放录音的速度,才能听到叫声。即使使用专门的麦克风,对录音中的高音尖叫声进行标记和分类也是很费力费时的。这些方法也容易导致人为错误和误解。

华盛顿大学精神病学和行为科学系教授John Neumaier博士告诉《数字趋势》杂志:“过去,为了更好地了解动物在行为测试中的情绪状态,研究人员将这些声音记录了下来。问题是,要对这些录音进行人工分析,就需要把它们放慢到人类可以听到的频率,这可能需要花费10倍的时间来听。这给研究人员带来了非常大的工作压力,使得他们不愿意用这种自然的方式来解读动物的情绪状态。”

因此,这个研究小组借助于人工智能AI)来实现这一过程的自动化。他们的程序叫做DeepSqueak,因为这项程序基于一种叫做深度学习的人工智能形式。

利用深度学习分析超声波发声

两位研究人员(华盛顿大学精神病学和行为科学系技术人员Russell Marx和华盛顿大学博士后研究员Kevin Coffey博士)与Neumaier教授合作开发了用于检测和分析超声波发声的DeepSqueak软件。他们的研究最近发表在《神经心理药理学自然杂志》上。

Coffey说:“我们可以训练这个软件,以一种更类似于人类学习的方式来分析这些叫声。我们用图片和例子来说明叫声,而不是用数学来描述叫声是什么。”

DeepSqueak将声音问题转化为图像问题。

DeepSqueak的输入是一个音频文件(.wav或.flac)。DeepSqueak将音频文件拆分为短的分段,然后将这些分段转换为图像(声波图)。下图显示了从原始音频文件到经过滤波的声波图的转换。

关于使用深度学习破译老鼠的语言分析和介绍

图片来源:Kevin R.Coffey、Russell G.Marx和John F.Neumair

将声波图输入到一个深度学习人工智能程序中,这个程序可以对图像进行识别和分类,类似于自动驾驶汽车中用来识别停车标志和车道线的人工智能。它首先查看声波图中是否有吱吱声。如果有的话,是什么类型的吱吱声。

Marx说:“DeepSqueak使用仿生算法,这种仿生算法可以通过已经标记好的发声和噪音的例子来学习分离发声。”

关于使用深度学习破译老鼠的语言分析和介绍

图片来源:Kevin R. Coffey、 Russell G. Marx和John F. Neumaier

该小组开始使用Deepsqueak时,采用的是MathWorks网站的示例代码Object Detection Using Faster R-CNN Deep Learning(使用Faster R-CNN深度学习进行对象检测):

在此基础上,他们开发了DeepSqueak软件包和MATLAB图形用户界面。DeepSqueak使用了Computer Vision System Toolbox(计算机视觉系统工具箱)、Curve Fitting Toolbox(曲线拟合工具箱)、Image Processing Toolbox(图像处理工具箱)、Parallel Computing Toolbox(并行计算工具箱)和Deep Learning Toolbox(深度学习工具箱)。

该技术有助于开发更好的成瘾治疗方法

这个研究小组的重点是精神病学和行为科学。

这项无损伤性研究发现,啮齿类动物在预期得到奖励(如,糖)或与同伴玩耍时最快乐。他们还发现,当雌性啮齿动物在附近时,雄性啮齿动物的行为也不同。情况正如预期,并无意外。

Neumaier教授说,他的目标是开发压力失调和成瘾的治疗方法。DeepSqueak使超声波发音的解码破译工作变得方便快捷,可以帮助实验室更快地实现目标。

他说:“如果科学家能更好地理解药物如何改变大脑活动,从而引起愉悦或不愉悦的感觉,我们就可以设计出更好的治疗成瘾的方法。”

该小组已经向所有研究人员开放了DeepSqueak,他们可以创建自己的分析。代码在Github上:

https://github.com/DrCoffey/DeepSqueak

该程序目前可以识别大约20种不同的超声波发声。该小组希望,当其他人识别和标记各种超声波发声时,他们能够为老鼠的叫声创建一个虚拟的“谷歌翻译”。

相关阅读:

直播预告 | MATLAB EXPO 2019,大师在线开讲 >>

深度学习网络到底在“看”哪里?

昆虫大脑完胜机器学习

使用 MATLAB 图像处理算法,视频实时加持蓝天背景

MATLAB 的艺术鉴赏的能力

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 超声波
    +关注

    关注

    63

    文章

    3014

    浏览量

    138351
  • 网络
    +关注

    关注

    14

    文章

    7557

    浏览量

    88742
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121118
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 521次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是
    的头像 发表于 10-27 11:13 383次阅读

    FPGA加速深度学习模型的案例

    :DE5Net_Conv_Accelerator 应用场景 :面向深度学习的开源项目,实现了AlexNet的第一层卷积运算加速。 技术特点 : 采用了Verilog语言进行编程,与PCIe接口相集成,可以直接插入到
    的头像 发表于 10-25 09:22 215次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 677次阅读

    FPGA做深度学习能走多远?

    的发展前景较为广阔,但也面临一些挑战。以下是一些关于 FPGA 在深度学习中应用前景的观点,仅供参考: • 优势方面: • 高度定制化的计算架构:FPGA 可以根据深度
    发表于 09-27 20:53

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    今天来学习语言模型在自然语言理解方面的原理以及问答回复实现。 主要是基于深度学习和自然语言处理
    发表于 08-02 11:03

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训练过程、以及测试和评估,并提供一个基于Mat
    的头像 发表于 07-14 14:21 2181次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度
    的头像 发表于 07-09 10:50 694次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度
    的头像 发表于 07-05 09:47 912次阅读

    深度学习常用的Python库

    深度学习常用的Python库,包括核心库、可视化工具、深度学习框架、自然语言处理库以及数据抓取库等,并详细
    的头像 发表于 07-03 16:04 629次阅读

    深度学习与卷积神经网络的应用

    到自然语言处理,深度学习和CNN正逐步改变着我们的生活方式。本文将深入探讨深度学习与卷积神经网络的基本概念、工作原理及其在多个领域的应用,并
    的头像 发表于 07-02 18:19 888次阅读

    深度学习模型训练过程详解

    详细介绍深度学习模型训练的全过程,包括数据预处理、模型构建、损失函数定义、优化算法选择、训练过程以及模型的评估与调优。
    的头像 发表于 07-01 16:13 1242次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1340次阅读

    语言模型:原理与工程实践+初识2

    前言 深度学习是机器学习的分支,而大语言模型是深度学习的分支。机器
    发表于 05-13 00:09

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 621次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?