0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于如何使用MATLAB 深度学习进行语义分割的方法详解

MATLAB 来源:djl 2019-09-12 11:30 次阅读

这篇文章展示了一个具体的文档示例,演示如何使用深度学习和 Computer Vision System Toolbox 训练语义分割网络

语义分割网络对图像中的每个像素进行分类,从而生成按类分割的图像。语义分割的应用包括用于自动驾驶的道路分割和医学诊断中的癌细胞分割。

如需了解更多文档示例和详细信息,建议查阅技术文档:https://cn.mathworks.com/help

为了说明训练过程,本示例将训练 SegNet,一种用于图像语义分割的卷积神经网络 (CNN)。用于语义分割的其他类型网络包括全卷积网络 (FCN) 和 U-Net。以下所示训练过程也可应用于这些网络。

本示例使用来自剑桥大学的CamVid 数据集展开训练。此数据集是包含驾驶时所获得的街道级视图的图像集合。该数据集为 32 种语义类提供了像素级标签,包括车辆、行人和道路。

建立

本示例创建了 SegNet 网络,其权重从 VGG-16 网络初始化。要获取 VGG-16,请安装Neural Network Toolbox Model for VGG-16 Network:

安装完成后,运行以下代码以验证是否安装正确。

vgg16();

此外,请下载预训练版 SegNet。预训练模型可支持您运行整个示例,而无需等待训练完成。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

强烈建议采用计算能力为 3.0 或更高级别,支持 CUDA 的 NVIDIA GPU 来运行本示例。使用 GPU 需要 Parallel Computing Toolbox。

下载 CamVid 数据集

从以下 URL 中下载 CamVid 数据集。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

注意:数据下载时间取决于您的 Internet 连接情况。在下载完成之前,上面使用的命令会阻止访问 MATLAB。或者,您可以使用 Web 浏览器先将数据集下载到本地磁盘。要使用从 Web 中下载的文件,请将上述 outputFolder 变量更改为下载文件的位置。

加载 CamVid 图像

用于加载 CamVid 图像。借助 imageDatastore,可以高效地加载磁盘上的大量图像数据。

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full');imds = imageDatastore(imgDir);

显示其中一个图像。

I = readimage(imds,1);I = histeq(I);imshow(I)

加载 CamVid 像素标签图像

使用imageDatastore加载 CamVid 像素标签图像。pixelLabelDatastore 将像素标签数据和标签 ID 封装到类名映射中。

按照 SegNet 原创论文(Badrinarayanan、Vijay、Alex Kendall 和 Roberto Cipolla:《SegNet:用于图像分割的一种深度卷积编码器-解码器架构》(SegNet: A Deep Convolutional Encoder-Decoder Architecture for ImageSegmentation)。arXiv 预印本:1511.00561,201)中采用的步骤进行操作,将 CamVid 中的 32 个原始类分组为 11 个类。指定这些类。

classes = [ "Sky" "Building" "Pole" "Road" "Pavement" "Tree" "SignSymbol" "Fence" "Car" "Pedestrian" "Bicyclist" ];

要将 32 个类减少为 11 个,请将原始数据集中的多个类组合在一起。例如,“Car” 是 “Car” 、 “SUVPickupTruck” 、 “Truck_Bus” 、 “Train” 和 “OtherMoving” 的组合。使用支持函数 camvidPixelLabelIDs 返回已分组的标签 ID,该函数会在本示例的末尾列出。

labelIDs = camvidPixelLabelIDs();

使用这些类和标签 ID 创建 pixelLabelDatastore。

labelDir = fullfile(outputFolder,'labels');pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

读取并在一幅图像上叠加显示像素标签图像。

C = readimage(pxds,1);cmap = camvidColorMap;B = labeloverlay(I,C,'ColorMap',cmap);imshow(B)pixelLabelColorbar(cmap,classes);

没有颜色叠加的区域没有像素标签,在训练期间不会使用这些区域。

分析数据集统计信息

要查看 CamVid 数据集中类标签的分布情况,请使用countEachLabel。此函数会按类标签计算像素数。

tbl = countEachLabel(pxds)

关于如何使用MATLAB 深度学习进行语义分割的方法详解

按类可视化像素计数。

frequency = tbl.PixelCount/sum(tbl.PixelCount);bar(1:numel(classes),frequency)xticks(1:numel(classes)) xticklabels(tbl.Name)xtickangle(45)ylabel('Frequency')

关于如何使用MATLAB 深度学习进行语义分割的方法详解

理想情况下,所有类都有相同数量的观察结果。但是,CamVid 中的这些类比例失衡,这是街道场景汽车数据集中的常见问题。由于天空、建筑物和道路覆盖了图像中的更多区域,因此相比行人和骑自行车者像素,这些场景拥有更多的天空、建筑物和道路像素。如果处理不当,这种失衡可能影响学习过程,因为学习过程偏向主导类。在本示例中,您稍后将使用类权重来处理此问题。

调整 CamVid 数据的大小

CamVid 数据集中的图像大小为 720 x 960。要减少训练时间和内存使用量,请将图像和像素标记图像的大小调整为 360 x 480。resizeCamVidImages 和 resizeCamVidPixelLabels 是本示例末尾所列出的支持函数。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

准备训练集和测试集

使用数据集中 60% 的图像训练 SegNet。其余图像用于测试。以下代码会将图像和像素标记数据随机分成训练集和测试集。

[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = partitionCamVidData(imds,pxds);

60/40 拆分会生产以下数量的训练图像和测试图像:

numTrainingImages = numel(imdsTrain.Files)

numTrainingImages = 421

numTestingImages = numel(imdsTest.Files)

numTestingImages = 280

创建网络

使用segnetLayers创建利用 VGG-16 权重初始化的 SegNet 网络。segnetLayers 会自动执行传输 VGG-16 中的权重所需的网络操作,并添加语义分割所需其他网络层。

imageSize = [360 480 3];numClasses = numel(classes);lgraph = segnetLayers(imageSize,numClasses,'vgg16');

根据数据集中图像的大小选择图像大小。根据 CamVid 中的类选择类的数量。

使用类权重平衡类

如前所示,CamVid 中的这些类比例失衡。要改进训练情况,可以使用类权重来平衡这些类。使用之前通过countEachLayer计算的像素标签计数,并计算中值频率类权重。

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;classWeights = median(imageFreq) ./ imageFreq

关于如何使用MATLAB 深度学习进行语义分割的方法详解

使用pixelClassificationLayer指定类权重。

pxLayer = pixelClassificationLayer('Name','labels','ClassNames',tbl.Name,'ClassWeights',classWeights)

关于如何使用MATLAB 深度学习进行语义分割的方法详解

通过删除当前 pixelClassificationLayer 并添加新层,使用新的 pixelClassificationLayer 更新 SegNet 网络。当前 pixelClassificationLayer 名为“pixelLabels”。使用removeLayers删除该层,使用addLayers添加新层,然后使用connectLayers将新层连接到网络的其余部分。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

选择训练选项

用于训练的优化算法是引入动量的随机梯度下降 (SGDM) 算法。使用trainingOptions指定用于 SGDM 的超参数。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

大小为 4 的 minimatch 用于减少训练时的内存使用量。您可以根据系统中的 GPU 内存量增加或减少此值。

数据扩充

在训练期间使用数据扩充向网络提供更多示例,以便提高网络的准确性。此处,随机左/右反射以及 +/- 10 像素的随机 X/Y 平移用于数据扩充。用于指定这些数据扩充参数

关于如何使用MATLAB 深度学习进行语义分割的方法详解

imageDataAugmenter 支持其他几种类型的数据扩充。选择它们需要经验分析,并且这是另一个层次的超参数调整。

开始训练

使用pixelLabelImageDatastore组合训练数据和数据扩充选择。pixelLabelImageDatastore 会读取批量训练数据,应用数据扩充,并将已扩充的数据发送至训练算法。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

如果 doTraining 标志为 true,则会开始训练。否则,会加载预训练网络。注意:NVIDIA Titan X 上的训练大约需要 5 个小时,根据您的 GPU 硬件具体情况,可能会需要更长的时间。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

在图像上测试网络

作为快速完整性检查,将在测试图像上运行已训练的网络。

I = read(imdsTest);C = semanticseg(I, net);

显示结果。

关于如何使用MATLAB 深度学习进行语义分割的方法详解

将 C 中的结果与 pxdsTest 中的预期真值进行比较。绿色和洋红色区域突出显示了分割结果与预期真值不同的区域。

expectedResult = read(pxdsTest);actual = uint8(C);expected = uint8(expectedResult);imshowpair(actual, expected)

从视觉上看,道路、天空、建筑物等类的语义分割结果重叠情况良好。然而,行人和车辆等较小的对象则不那么准确。可以使用交叉联合 (IoU) 指标(又称 Jaccard 系数)来测量每个类的重叠量。使用jaccard函数测量 IoU。

iou = jaccard(C, expectedResult);table(classes,iou)

关于如何使用MATLAB 深度学习进行语义分割的方法详解

IoU 指标可确认视觉效果。道路、天空和建筑物类具有较高的 IoU 分数,而行人和车辆等类的分数较低。其他常见的分割指标包括Dice 系数和Boundary-F1轮廓匹配分数。

评估已训练的网络

要测量多个测试图像的准确性,请在整个测试集中运行semanticseg。

pxdsResults = semanticseg(imdsTest,net,'MiniBatchSize',4,'WriteLocation',tempdir,'Verbose',false);

semanticseg 会将测试集的结果作为 pixelLabelDatastore 对象返回。imdsTest 中每个测试图像的实际像素标签数据会在“WriteLocation”参数指定的位置写入磁盘。使用evaluateSemanticSegmentation测量测试集结果的语义分割指标。

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false);

evaluateSemanticSegmentation返回整个数据集、各个类以及每个测试图像的各种指标。要查看数据集级别指标,请检查 metrics.DataSetMetrics。

metrics.DataSetMetrics

关于如何使用MATLAB 深度学习进行语义分割的方法详解

数据集指标可提供网络性能的高级概述。要查看每个类对整体性能的影响,请使用 metrics.ClassMetrics 检查每个类的指标。

metrics.ClassMetrics

关于如何使用MATLAB 深度学习进行语义分割的方法详解

尽管数据集整体性能非常高,但类指标显示,诸如 Pedestrian、Bicyclist 和 Car 等代表性不足的类分割效果不如Road、Sky 和 Building 等类。附加数据多一些代表性不足类样本可能会提升分割效果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络
    +关注

    关注

    14

    文章

    7594

    浏览量

    89086
  • 深度学习
    +关注

    关注

    73

    文章

    5511

    浏览量

    121392
收藏 人收藏

    评论

    相关推荐

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 244次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的<b class='flag-5'>方法</b>

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 1076次阅读

    语义分割25种损失函数综述和展望

    语义图像分割,即将图像中的每个像素分类到特定的类别中,是许多视觉理解系统中的重要组成部分。作为评估统计模型性能的主要标准,损失函数对于塑造基于深度学习
    的头像 发表于 10-22 08:04 748次阅读
    <b class='flag-5'>语义</b><b class='flag-5'>分割</b>25种损失函数综述和展望

    图像语义分割的实用性是什么

    什么是图像语义分割 图像语义分割是一种将图像中的所有像素点按照其语义类别进行分类的任务。与传统
    的头像 发表于 07-17 09:56 499次阅读

    图像分割语义分割的区别与联系

    图像分割语义分割是计算机视觉领域中两个重要的概念,它们在图像处理和分析中发挥着关键作用。 1. 图像分割简介 图像分割是将图像划分为多个区
    的头像 发表于 07-17 09:55 1125次阅读

    利用Matlab函数实现深度学习算法

    Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训练过程、以及测试和评估,并提供一个基于
    的头像 发表于 07-14 14:21 2408次阅读

    基于Python的深度学习人脸识别方法

    基于Python的深度学习人脸识别方法是一个涉及多个技术领域的复杂话题,包括计算机视觉、深度学习、以及图像处理等。在这里,我将概述一个基本的
    的头像 发表于 07-14 11:52 1307次阅读

    机器学习中的数据分割方法

    在机器学习中,数据分割是一项至关重要的任务,它直接影响到模型的训练效果、泛化能力以及最终的性能评估。本文将从多个方面详细探讨机器学习中数据分割方法
    的头像 发表于 07-10 16:10 2067次阅读

    深度学习中的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用
    的头像 发表于 07-09 15:54 1096次阅读

    图像分割语义分割中的CNN模型综述

    图像分割语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度
    的头像 发表于 07-09 11:51 1098次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度学习模型
    的头像 发表于 07-09 10:50 874次阅读

    机器人视觉技术中图像分割方法有哪些

    和分析。本文将详细介绍图像分割的各种方法,包括传统的图像处理方法和基于深度学习方法。 阈值
    的头像 发表于 07-04 11:34 1114次阅读

    深度学习的模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习模型进行优化与调试是确保其性能优越的
    的头像 发表于 07-01 11:41 935次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1504次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1350次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的<b class='flag-5'>语义</b>SLAM