0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在哪里可以免费找到GPU计算资源薅薅国内GPU羊毛

8g3K_AI_Thinker 来源:未知 2019-08-03 11:54 次阅读

没有什么比薅 GPU 羊毛更喜闻乐见。

之前有专门教程介绍谷歌资源,需要科学上网。但最近知乎上又有一套国产GPU资源的薅羊毛分享,价值上亿的高性能算力,对科研学习者完全免费。

这就是百度的 AI Studio。现在,我们将这篇测评及使用分享转载如下,祝薅羊毛开心顺利。

1. AI Studio 和飞桨(PaddlePaddle)

AI Studio 和飞桨算是后起之秀,包括我在内的很多人还不是很熟悉这一整套方案,在开薅之前,所以先简单介绍下。

1.1 AI Studio

AI Studio是百度提供的一个针对AI学习者的在线一体化开发实训平台。

平台集合了 AI 教程, 深度学习样例工程, 各领域的经典数据集, 云端的运算及存储资源, 以及比赛平台和社区。[1]你可以把 AI Studio 看成国产版的 Kaggle。

和 Kaggle 类似,AI Studio 也提供了 GPU 支持,但百度 AI Studio 在 GPU 上有一个很明显的优势。Kaggle 采用的是 Tesla K80 的 GPU,AI Studio 采用的是 Tesla V100 的 GPU,那么下表对比两款单精度浮点运算性能,就能感觉 v100 的优势了。

明显在单精度浮点运算上,AI Studio 提供的运行环境在计算性能上还是很有优势的。理论上训练速度可以提高近 3 倍左右。

虽然性能上好很多,但目前还是可以免费薅到,目前 AI Studio 提供了免费申请和运行项目奖励这两种获得算力卡的方式,最后一章我会带领大家去薅。

即使算力卡用完了(目前送得太多,根本用不完),AI Studio 的 CPU 也是很有竞争力的。亲自用脚本测试过,AI Studio 的 CPU 是 Intel(R) Xeon(R) Gold 6148 CPU,可以说在配置上,AI Studio 也是很有竞争力的。

1.2 飞桨

根据官网介绍,飞桨是百度推出的 “源于产业实践的开源深度学习平台”,致力于让深度学习技术的创新与应用更简单。

Paddle 是 Parallel Distributed Deep Learning 的缩写,翻译过来是就是桨。和 TensorFlow,Pytorch 等框架一样,飞桨给开发者提供了很多常用的架构,也可以直接在包里直接加载常用的数据库,对于学习者来说,还是很方便的。

飞桨(PaddlePaddle)还是有点国产的意思,去Github可以搜到PaddlePaddle 的项目,除了英文文档,还提供了中文文档,这个有时候还是挺方便的。虽然现在 star 比起 TensorFlow 还是差不少,但是感觉进展得如火如荼。

1.3 AI Studio 与飞桨的生态

下图是百度在4月首届 WAVE SUMMIT 2019 深度学习开发者峰会时首次对外公布的 飞桨全景图。

生态其实设计得很好,可能TensorFlow先发得太早吧,感觉飞桨追赶得很吃力。但从百度最近推广飞桨的力度来看,我猜飞桨很有可能两三年左右进入主流深度学习框架之列。

2. AI Studio实例测评:以数字识别项目为例

2.1 AI Studio GPU 和 CPU 性能对比。

为了测试 AI Studio 的性能,我用最经典的 MNIST 数据集,在 LeNet 5 模型上跑,对比在 GPU 和 CPU 下在 AI Studio 的的性能。同时我进行了一个不算严谨的测试,我用最经典的 MNIST 数据集,飞桨用的 MNIST 数据集是 60000 个训练数据,10000 个测试数据,Kaggle 的训练集数据 42000,测试集数据 28000。https://aiStudio.baidu.com/aiStudio/projectdetail/45293

以下是 AIStudio 的 CPU 和 GPU 测试性能对比

GPU 提升效果为 11 倍,因为训练过程有验证测试,而且 CPU 配置也太高了,所以并未达到理论上的 47x 的加速,但这速度还不错。

2.2 AI Studio 和 Kaggle 对比测试

测试环境:

1. Kaggle Kernel.

测试kernelhttps://www.kaggle.com/orange90/mnist-with-lenet-5-test-run-time. Batch_size =50,训练 5000 轮,使用框架TensorFlow,CNN 架构是 LeNet-5

2. AI Studio.

测试项目https://aiStudio.baidu.com/aiStudio/projectdetail/45293

Batch_size=64,训练 5000 轮,使用框架飞桨, CNN 架构是 LeNet-5

AI Studio 的测试结果在 2.1 展示了,就不再赘述了,以下是 Kaggle 的性能测试对比:

GPU 提升效果为 8 倍,因为训练过程有验证测试,所以并未达到理论上的 12.5x 的加速。

由于架构的超参不一样,直接对比运行时间不太严谨,但从 GPU 提升速度的倍数上来说,AI Studio 略胜一筹,况且 AI Studio 本来 CPU 就很高配了,所以理论上 47x 的加速可能还得打个折。

2.3 AWS

也在AWS开了个instance来测试,选的是这一款配置里的p2.xlarge

直接把2.2里用到的kaggle的内核导进去了,测试结果如下:

性能上比前两者都差一点。

顺便一提,这个测试做得我脑壳痛,前期开 instance,配置环境的就花了一个多小时。对于 AWS 新手来说,可能折腾一天,薅了十几美刀,还是没能把代码跑通。真的强烈不推荐在AWS来练习自己 deep learning 技能。

2.4. 测试总结

下表总结在不同环境下的测试效果及成本:

在使用体验上,和 Kaggle Kernel 或者 Jupyter Notebook 很接近,虽然外观稍有不同,但快捷键基本一样,没有太大的不适应。除此之外,AI Studio 由于在国内,页面响应比 Kaggle 更快,比 Kaggle 网络更稳定,断线重连几率要更低,毕竟断线重连要重跑还是挺蛋疼的。

不过需要提醒的是,AI Studio 目前还是按运行环境启动时间来计费,是在无 GPU 环境下把代码写好,再开启 GPU 去跑。虽然 AI Studio 的算力卡也是送的,但也要赶紧薅起来,囤点算力资源,万一哪天百度没钱了,不送了呢?

3. 羊毛来了,薅起来

现在的算力卡还是很好拿的,没什么门槛,自己申请一下就拿到了,而且每天运行一次项目,又送 12 个小时算力,连续运行 5 天再加送 48 小时。

值得注意的是,申请的算力卡到手就是 48 小时,裂变之后能凑 120 小时,而且有效期比日常运行获取的12小时这种要长很多。

我寻思每天免费让你12小时 NVIDIA v 100GPU 这种事情,真的是天上掉馅饼吧。

此外,AI Studio 官方也有比赛,有奖金,如果你的实力在 kaggle 里离拿奖金只是一步之遥,那么蹭 AI Studio 还没火起来之前,去 AI Studio 比赛应该是很好拿奖的。

3.1 自己申请

点进https://aistudio.baidu.com/aistudio/questionnaire?activityid=539

接着填写个人信息

提交后,会出现下图

然后就静候佳音。通过运营人员核验后,用户的邮箱将收到运营人员发送的算力邀请码:一串 32 位数字。

通过上面链接能申请到 48 小时的算力卡(有效期1个月),并且可以分裂,送给别人(稍后送上我的分裂算力卡)

使用算力卡的方法很简单,在运行项目时选上 GPU,就会开始消耗了,如下图。

3.2 跑项目赚算力卡

这个简直了,你不仅可以运行自己的深度学习代码,测试自己的项目,而且同时还会得到算力卡。每天跑一次就可以得到12小时算力卡(有效期2天),另外算力充电计划,就是连续5天有使用算力卡,就会额外送48小时(有效期7天)。但预感这么高成本的事情应该不会持续太久,建议早薅。下面是我的算力卡奖励历史,感觉只要你用,AI Studio 就送你算力,不担心算力不够。

3.3 算力卡分裂

AI Studio 的算力卡有分裂功能,你申请到算力卡会有三个邀请码,你可以分享给你的朋友。我申请的算力卡有三个分裂,我每天会在评论区放一个算力卡,对羊毛贪得无厌,或者懒得申请又想马上使用的,那可要盯紧评论区了。

3.4 比赛薅羊毛

另外额外告诉大家一个可能能行的薅羊毛的方法,需要一定的实力。AI Studio 也有一些常规比赛,相对于 Kaggle,可能竞争会小点,如果你在 Kaggle 能top10%以上,来 AI Studio 薅类似的比赛,就很大几率拿得到奖金了。

羊毛不是天天有,该出手时就出手!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10825

    浏览量

    211149
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4701

    浏览量

    128705
  • AI
    AI
    +关注

    关注

    87

    文章

    30146

    浏览量

    268413

原文标题:免费GPU计算资源哪里有?带你薅薅国内GPU羊毛

文章出处:【微信号:AI_Thinker,微信公众号:人工智能头条】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    233.国产GPU和国外竞争对手的差距在哪里?#国产gpu#英伟达

    gpu英伟达
    小凡
    发布于 :2022年10月04日 13:19:50

    GPU

    GPU已经不再局限于3D图形处理了,GPU通用计算技术发展已经引起业界不少的关注,事实也证明在浮点运算、并行计算等部分计算方面,
    发表于 01-16 08:59

    AI开发者福音!阿里云推出国内首个基于英伟达NGC的GPU优化容器

    GPU计算平台。阿里云推出国内首个基于英伟达NGC的GPU优化容器3月28日,在2018云栖大会·深圳峰会上,阿里云宣布与英伟达GPU
    发表于 04-04 14:39

    GPU虚拟化在哪里发生?

    GPU虚拟化在哪里发生?它是否出现在GRID卡中,然后将vGPU呈现给管理程序然后呈现给客户?或者,GPU的虚拟化和调度是否真的发生在管理程序上安装的GRID管理器软件?是否使用了SR-IOV?我
    发表于 09-28 16:45

    使用vGPU的Horizon View:未分配GPU资源

    :[msg.mks.noGPUResourceFallback]硬件GPU资源不可用。虚拟机将使用软件渲染。如果你看看周围的工作,我重新启动VM,它最终会工作。似乎在开机期间某些VM在K1上分配了GPU核心时出现故障。我没有
    发表于 10-08 14:07

    哪里可以免费实现C语言中的模糊逻辑控制器?

    嗨,有人知道在哪里可以免费实现C语言中的模糊逻辑控制器吗?是的,我知道AN600,但它是从1997和“不是最先进的”,因为它是汇编代码。最好的问候。
    发表于 09-25 06:22

    请问GPU与DSP、CPU区别在哪里

    GPU工作原理是什么?GPU主要作用有哪些?GPU与DSP区别在哪里GPU和CPU的区别是什么?
    发表于 04-19 09:16

    GPU,RISC-V的长痛

    无论是人工智能、高性能计算,还是汽车或TWS,我们已经在各种产品形态中看到了RISC-V的身影。然而,有一种产品却成了RISC-V长久以来的痛,那就是GPU。固然,RISC-V在某些方面已经有了不逊
    发表于 03-24 15:53

    NXP lpc1768设计手册哪里可以免费找到

    arm lpc1768设计手册哪里可以免费找到
    发表于 04-14 09:58

    新客羊毛,工程师尺1元包邮到家!

    还没领的速领!1块钱个PCB工程师尺子,这波血赚不亏!自营商品当天发货,基本当天买次日达。点击下单点击下单
    发表于 10-26 15:50

    GPU如何在imx8m plus上工作以及GPU驱动程序如何集成到DRM驱动程序框架中?

    我正在研究 imx8m plus 的 DRM 驱动程序。在linux内核源代码中,我找到了CRTC、Encoder和Connector的驱动源,但是GPU驱动在哪里呢?我知道 vivante
    发表于 06-08 08:23

    羊毛了! 华强芯城双11三重好礼!让你一次购爽!

    羊毛了!华强芯城双11三重好礼!让你一次购爽!
    的头像 发表于 03-04 10:30 2044次阅读

    【福利剧透】阿里云开年采购季“羊毛”攻略在此!SSL证书限时4折抢购中……

    为你整理好了最新的SSL证书优惠攻略! 噢~~ 不~~ 是“羊毛”攻略! 照着买,更便宜! 3月1日——3月31日 嗨购走起!!!   接下来,小编就带你一起领略一下今年的阿里云开年采购季SSL证书如何“
    的头像 发表于 03-15 16:52 946次阅读

    【新客福利】9.9包邮的万用表羊毛,还有人没吗?

    爱好者及家庭等。*活动仅限新用户参与,每位客户限购一次。立即抢购原文标题:【新客福利】9.9包邮的万用表羊毛,还有人没吗?文章出处:【微信公众号:华秋商城】欢迎
    的头像 发表于 11-29 15:20 594次阅读
    【新客福利】9.9包邮的万用表<b class='flag-5'>羊毛</b>,还有人没<b class='flag-5'>薅</b>吗?

    揭秘GPU: 高端GPU架构设计的挑战

    设计具体难在哪里?这包括许多方面的因素。1、能力均衡性的挑战在架构设计中,通用性要求GPU能够适应各种场景,易用性关乎客户和开发者的体验,而高性能是硬件的灵魂。如何均衡
    的头像 发表于 12-21 08:28 856次阅读
    揭秘<b class='flag-5'>GPU</b>: 高端<b class='flag-5'>GPU</b>架构设计的挑战