0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI临床决策支持系统的过去与未来

MqC7_CAAI_1981 来源:YXQ 2019-08-05 11:17 次阅读

5月25日-26日,由中国人工智能学会主办,南京市麒麟科技创新园管理委员会与京东云共同承办的2019全球人工智能技术大会(2019 GAITC)在南京紫金山庄成功举行。

在第二天的智能时代新中医论坛上,中韩医疗机器人产业发展协会秘书长、COGPM 中国妇产科心身医学协作中心主任张敬发表了主题为《人工智能临床决策支持系统的过去与未来》的精彩演讲。

以下是张敬的演讲实录:

我国医疗卫生一个现状是优质医疗资源供不应求,人均职业医师人数,和美国、英国、俄罗斯存在一定差距。大医院人满为患,小医院没有人,基层医师水平有待提高。医生培养周期很长,医疗误诊率偏高,美国的整体误诊率包含用药错误在 15%,我国大概在 28% 以上。疾病谱变化快,治疗技术日新月异,医生自身的知识储备和学习速度逐步接近极限。

Gartner 新技术发展曲线中,CDSS、新药发现、虚拟助手智能化器械等这些分别处在不同产业发展节点,CDSS 人工智能决策系统有了极大的发展机会。

2018 年电子病历系统功能应用水平,分级评价方法和标准试行发布。临床决策支持已经成为电子病历系统要求核心部分,国家卫建委要求到 2019 年所有三级医院要达到电子病历系统应用三级以上,医院内不同部门间数据交换;到 2020 年,所有三级医院要达到电子病历系统应用的四级,即医院实现全信息共享,并且具备决策支持功能。

中国 CFDA 对医疗人工智能产品审批刚刚开始,截止目前没有一个深度学习的产品得到批准上市。CFDA 目前建立了两个样板库,一个是肺结节,一个是糖眼,但是临床决策支持系统还没有一个标准。国家食品药品监督管理总局药品审评中心即将公布《深度学习辅助决策医疗器械软件审评要点》,相信我们一定会向 FDA 评审人工智能标准靠拢。

FDA 目前对人工智能医疗系统也批准了一些产品,FDA 批准的人工智能倾向于疾病预测而不是诊断。海外目前基于人工智能的临床决策支持系统不同项目对比分析,有单病种的,有专家知识库的系统。

临床医生在整个患者,就诊完整流程中经历不同决策节点。从入院、诊疗、手术、门诊到术后康复,在每个阶段都需要做一些决策。人工智能临床决策支持系统最大的挑战就是高质量数据的获取,第一是电子病历结构化处理,我们主流医院信息化已经接近尾声,绝大多数医院都使用了 HIS,但是国内有近千家 HIS 供应商,数据信心并不能流通和共享,很多数据处于孤岛的状态。第二就是多元异构数据的挖掘和处理,标注的质量决定了数据库质量。

数据处理的流程,人工智能处理层主要包含两个层面,一个是自然语言处理;另外一个是神经网络算法。临床支持系统,就是临床决策的预测、非临床决策预测、临床决策洞见和优化。目前 CDSS 分成三种类型,第一种是知识库查询类型;第二种是基于知识规则结合部分数据做的推荐类型,典型的就是 IBM Waston。第三种是这两年兴起的真实世界数据驱动性。前两种类型在真实临床中实践有很大障碍,知识库型在知识方面偏碎片化,只能在医生决策系统中做一个支持补充查询,对提升医疗效率和质量效果微弱。第二种知识规

则推荐型,比如像 IBM waston 有很大争议。

更加贴近临床实际应用场景的基于海量真实世界病例数据的临床决策支持系统是未来的方向。CDSS 有一些不同应用类型,第一个就是单病种或者单疾病辅助诊疗系统,也有多病种医生工作站,相似病历和患者诊疗方案的推荐,如疾病图谱、临床科研、流行病学研究和疾病预测。

我和大家分享一个美国案例。这个项目目前已经收集了 5 500 万高质量患者电子病历,其中美国电子病历将近 3 500 万,欧洲、俄罗斯和亚洲大概接近 2 000 万,这里面相应是 2 亿次诊疗方案、10 年连续有效数据,同时它也能调用 2 700 万全球临床的文献。它有几个不同应用方向,第一个就是基于真实数据的诊疗方案推荐,它不做诊断,诊断永远是医生做,你输入诊断结果或者 ICD10 的代码,再输入患者基础特征(如他的年龄、病史),系统从5500 万患者中调取最接近的。例如,2 000 患者,采用 A 方案诊疗结果是什么?采用 B 方案结果是什么? 第二个产品外科。外科手术参数推荐,它调用所有真实数据中最接近的患者,采用不同的手术参数所得到的诊疗结果进行对比,选择方案的还是医生。第三个产品,医院经营效率管理、患者风险分层管理。在美国 5% 的患者超过了美国40% 的医疗费用,怎样对小比率高风险患者进行识别和分层管理,进而提高医院效率降低管理成本。

这个项目过去两年在美国做的大样本临床实验,参与有两家医院,其中一家医院大概是 200 多名医生,另外一家医院大概400 多名医生。一家医院使用临床决策支持系统,一家不使用,结果是使用 AI+CDSS的医院和医生治疗周期降低 10%,病发率降低 15%,医院成本降低 7%。临床决策支持系统还存在一些挑战。挑战主要来自于高质量临床数据,这是最大的一个壁垒。缺乏大型医学知识库有效支持、可移植性差、医学伦理,以及法律问题和注册问题。人工智能人才非常稀缺。临床决策支持系统如何商业化;最终支付方能否出现。目前和未来相当长的一段时间,人工智能临床支持系统的临床应用定位是非常清晰的,它是医生的效率工具和助手。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31133

    浏览量

    269470
  • 智能医疗
    +关注

    关注

    27

    文章

    1384

    浏览量

    74522

原文标题:演讲实录丨张敬:人工智能临床决策支持系统的过去与未来

文章出处:【微信号:CAAI-1981,微信公众号:中国人工智能学会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助科学家们更加
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    的训练和推理提供了强大的算力支持,使得AI在科学研究中的应用更加广泛和深入。 3. 数据驱动的研究范式 第二章还强调了数据在AI for Science中的核心地位。数据是AI模型的输
    发表于 10-14 09:16

    RISC-V如何支持不同的AI和机器学习框架和库?

    RISC-V如何支持不同的AI和机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    嵌入式系统未来趋势有哪些?

    处理器、增大存储容量和提高时钟频率等措施。更强的处理能力将使得嵌入式系统能够胜任更高级的应用场景,比如自动驾驶汽车当中的复杂决策支持系统。 3. 更低的功耗 尽管处理能力不断增强,但在未来
    发表于 09-12 15:42

    国内芯片行业的过去、现状与未来:EVASH Ultra EEPROM的视角

    国内芯片行业的过去、现状与未来:EVASH Ultra EEPROM的视角
    的头像 发表于 08-12 17:51 702次阅读

    平衡创新与伦理:AI时代的隐私保护和算法公平

    机制,还包括了数据的来源、处理方式以及使用目的的明确披露。这样不仅有助于监管机构进行审查,也让普通用户能够理解AI系统决策依据,从而减少因“黑箱操作”带来的不信任和误解。例如,在AI
    发表于 07-16 15:07

    NVIDIA IGX与Holoscan走进外科手术室

    AI 已经用于连接和分析手术室数据并据此提供预测,这对外科手术的未来发展至关重要,可以提高手术室效率并推动临床决策
    的头像 发表于 04-01 11:43 1217次阅读

    AI芯片未来会控制这个世界吗?

    AI芯片行业资讯
    芯广场
    发布于 :2024年03月27日 18:21:28

    NVIDIA与强生医疗科技合作,AI赋能数字手术生态系统

    AI技术正逐渐深入手术室,连接并分析海量数据,为外科手术的未来发展提供精准预测,从而提高手术室效率并优化临床决策
    的头像 发表于 03-27 10:20 458次阅读

    强生医疗科技与NVIDIA携手拓展AI在外科领域的应用

    AI 已经用于连接和分析手术室数据并据此提供预测,这对外科手术的未来发展至关重要,可以提高手术室效率并推动临床决策
    的头像 发表于 03-26 09:51 1349次阅读

    嵌入式系统发展前景?

    嵌入式系统发展前景? 嵌入式系统,从定义上来说,是一种专用的计算机系统,它被设计用来控制、监视或者帮助操作一些设备、装置或机器。在过去的几年里,嵌入式
    发表于 02-22 14:09

    亚马逊云科技助力沐瞳应用生成式AI技术打造卓越游戏体验 赋能业务决策

    业务决策。沐瞳旗下游戏产品《Mobile Legends: Bang Bang》(以下简称《MLBB》)基于亚马逊云科技和其合作伙伴在生成式AI领域的创新技术与解决方案,显著提升辱骂识别与舆情分析的响应速度与准确率,辱骂识别准确率达到90%以上,大幅度提升了玩家的游戏体验
    发表于 02-22 11:20 229次阅读
    亚马逊云科技助力沐瞳应用生成式<b class='flag-5'>AI</b>技术打造卓越游戏体验 赋能业务<b class='flag-5'>决策</b>

    亚马逊云科技助力沐瞳应用生成式AI技术打造卓越游戏体验 赋能业务决策

    决策。沐瞳旗下游戏产品《Mobile Legends: Bang Bang》(以下简称《MLBB》)基于亚马逊云科技和其合作伙伴在生成式AI领域的创新技术与解决方案,显著提升辱骂识别与舆情分析的响应速度与准确率,辱骂识别准确率达到90%以上,大幅度提升了玩家的游戏体验;舆
    的头像 发表于 02-22 09:25 424次阅读

    灌区信息化系统介绍(大数据分析为农业决策提供支持

    智慧灌区平台由数据监测系统、设备控制系统决策支持系统三部分组成。数据监测系统集成了水位计、流量计等传感设备,实时监测灌区的水文信息,并利用
    的头像 发表于 01-23 10:46 866次阅读
    灌区信息化<b class='flag-5'>系统</b>介绍(大数据分析为农业<b class='flag-5'>决策</b>提供<b class='flag-5'>支持</b>)

    基于多任务优化和人工智能赋能态势感知技术

    随着作战任务和系统的复杂性不断增加,在正确的时间做出正确的作战决策需要 (1) 实时态势感知,以及 (2) 提供自动建议的决策支持系统。这两项功能是作战任务管理
    的头像 发表于 01-18 15:22 675次阅读