0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机视觉迈进新征程 “玩家”找出哪些新玩法?

张康康 2019-08-05 13:58 次阅读

当前,计算机视觉的已经成为了一个跨学科的领域,计算机视觉源于1980年左右的神经网络技术,但是直到近几年才真正实现了大规模商业化落地。大规模的资金进入,促使更多专注于计算机视觉的企业不断出现,这些企业在不同的领域通过计算机视觉技术不断的改造升级着原有的商业模式。作为一个灵感来自人类视觉大脑皮层的技术,我们现在是否已经处在机器物体探测或分类能力与人类视觉相当,甚至更强的阶段了呢?

旷视科技AI鼻纹识别

近期,旷视科技推出AI鼻纹识别解决方案,这项解决方案最先应用于犬只身份认证。专用于宠物识别。有别于瞳孔、脸型等其他犬只认证方式,旷视选择鼻纹作为识别的关键特征。与人类指纹类似,犬类鼻纹具有唯一性与稳定不变性,即不存在鼻纹完全相同的两只犬、同一只犬的鼻纹亦不会随着成长而改变。主人只需对准犬鼻进行简单的抓拍或者视频录像,系统通过犬鼻检测,定位出鼻纹关键点,将提取到的鼻纹深度图信息汇入后台数据库,更可为犬只生成一张专属的身份证。目前,旷视鼻纹识别技术能达到犬只的1:1比对,在误识率为万分之一的情况下,试点场景中准确率95%;

极链科技:视频识别

目前视频人脸识别还有很多的困难与挑战,如视频图像质量差、人脸图像小灯问题,极链科技提出了以四模块对场景中的人脸进行识别。

1.视频结构化,将视频用镜头分割。通常采用全局特征和局部特征相结合的方法。全局特征检测全局颜色的分布突变,然后借用局部特征获得的人脸识别的跟踪结果、跟踪轨迹的断续来判断视频是否具有镜头切换。跟踪来判断镜头切换有一个很大的优点,因为后续的步骤也会采用相似的算法,所以这一步骤所需的算法是可以重复使用的。

2.人脸轨迹提取。完成了镜头分割以后,就可以分割好的单一镜头里进行人脸轨迹提取。在轨迹提取的算法上,同样要考虑准确率和速度的指标。要实现速度和准确率的平衡,可以有以下两种途径:一是间隔采样or逐帧处理,二是检测&跟踪的配合。

3.人脸识别。有了人脸轨迹之后,就可以开始进行人脸的识别了。但是在将人脸数据输入深度网络之前,还需要对其进行必要的变换和处理。其中一部分变换在针对人脸这一部分非常重要,尤其是在消费级视频里,那就是人脸的对齐。人脸对齐是利用人脸的特征点检测定位,将各种姿势的人脸图像还原矫正为正脸的过程。在算法框架中,需要加入人脸质量评估的算法,以过滤低质量的人脸图片,保证人脸数据的准确率。在样本足够的前提下,可以利用训练得到的模型对人脸样本进行特征提取。测试的时候,在视频中检测得的人脸后,将其输入到生成的特征向量里,与人脸互动的特征向量进行匹配,从而找到在特征空间中最接近的一个样本。

4.识别结果融合。以上提到的人脸识别都是针对单帧识别的图片而言的,之前说到的系统识别结果都是针对整个人脸轨迹而言。因此,最后需要将人脸识别的结果与整条人脸轨迹融合起来,得到整个轨迹的识别结果。

商汤科技:面部图片处理

近日,来自商汤科技,香港中文大学以及香港大学的研究团队提出了一种称为MaskGAN的新型框架,可实现多样化和交互式的面部操作。其主要观点是语义掩模作为灵活的面部操作的适当中间表示,使其具有保真度。MaskGAN有两个主要组成部分:

1.密集映射

2.编辑行为模拟训练

具体而言,密集映射网络学习自由形式的用户修改掩码和目标图像之间的样式映射,从而实现不同的生成结果。

以色列魏茨曼科学研究院:图像分离

本月,以色列魏茨曼科学研究所的研究人员开发出了一项名为Double-DIP的新技术,该技术能让系统在没有大量训练数据的情况下,通过深度学习来对图像进行编辑,分离人们在图片中想要的和不想要的部分。该研究基于一项名为DIP(Deep Image Prior)的混合图像恢复技术,因此研究人员将他们开发的新分离图像方法称为Double-DIP。DIP技术的研究成果已于美国时间2018年7月18日提交在arxiv上,名为《图像恢复的混合稀疏先验学习:深度学习与稀疏编码的结合(Learning Hybrid Sparsity Prior for Image Restoration: Where Deep Learning Meets Sparse Coding)》。

吕贝克大学:医学图像生成新方法

当前,GAN应用于医学研究还面临一项重大挑战。深度学习算法需要对高分辨率图像进行训练,才能产生最佳预测,然而合成这样的高分辨率图像,尤其是3D图像,需要大量的计算能力。来自吕贝克大学医学信息学研究所的研究人员提出了一种新方法,可以大大降低硬件的配置要求。研究人员把图像生成的过程分解为几个阶段:首先利用GAN生成低分辨率图像,然后在正确的分辨率下每次生成一小部分的细节图像。通过实验,研究人员发现这种方法不仅生成了逼真的高分辨率2D和3D图像,而且无论图像大小,支出费用都保持不变。

小结:

在深度学习技术出现之前,很多应用都遇到了瓶颈,进步很慢,每年只有大概的精确性提升。但随着深度学习的进步,计算机视觉的发展经历了一个巨大的飞跃,技术的不断升级也催生出了一系列跨行业的应用。随着主流的科技巨头入场,计算机视觉领域已经热闹非凡,但如果想要开创出一些新的应用获奖应用能力再进行提升,恐怕还有不短的路需要走。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5493

    浏览量

    120983
收藏 人收藏

    评论

    相关推荐

    计算机视觉有哪些优缺点

    计算机视觉作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像和视频中的信息。这一技术的发展不仅推动了多个行业的变革,也带来了诸多优势,但同时也伴随着一些挑战和局限性。以下是对
    的头像 发表于 08-14 09:49 738次阅读

    机器视觉计算机视觉有什么区别

    机器视觉计算机视觉是两个密切相关但又有所区别的概念。 一、定义 机器视觉 机器视觉,又称为计算机
    的头像 发表于 07-16 10:23 471次阅读

    计算机视觉的五大技术

    计算机视觉作为深度学习领域最热门的研究方向之一,其技术涵盖了多个方面,为人工智能的发展开拓了广阔的道路。以下是对计算机视觉五大技术的详细解析,包括图像分类、对象检测、目标跟踪、语义分割
    的头像 发表于 07-10 18:26 1203次阅读

    计算机视觉的工作原理和应用

    计算机视觉(Computer Vision,简称CV)是一门跨学科的研究领域,它利用计算机和数学算法来模拟人类视觉系统对图像和视频进行识别、理解、分析和处理。其核心目标在于使
    的头像 发表于 07-10 18:24 1655次阅读

    计算机视觉与人工智能的关系是什么

    引言 计算机视觉是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个领域的知识。人工智能则是研究如何使计算
    的头像 发表于 07-09 09:25 525次阅读

    计算机视觉与智能感知是干嘛的

    引言 计算机视觉(Computer Vision)是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个领域,是人工智能的重要组成部分。智能
    的头像 发表于 07-09 09:23 797次阅读

    计算机视觉和机器视觉区别在哪

    计算机视觉和机器视觉是两个密切相关但又有明显区别的领域。 一、定义 计算机视觉 计算机
    的头像 发表于 07-09 09:22 407次阅读

    计算机视觉和图像处理的区别和联系

    计算机视觉和图像处理是两个密切相关但又有明显区别的领域。 1. 基本概念 1.1 计算机视觉 计算机视觉
    的头像 发表于 07-09 09:16 1157次阅读

    计算机视觉属于人工智能吗

    属于,计算机视觉是人工智能领域的一个重要分支。 引言 计算机视觉是一门研究如何使计算机具有视觉
    的头像 发表于 07-09 09:11 1166次阅读

    深度学习在计算机视觉领域的应用

    随着人工智能技术的飞速发展,深度学习作为其中的核心技术之一,已经在计算机视觉领域取得了显著的成果。计算机视觉,作为计算机科学的一个重要分支,
    的头像 发表于 07-01 11:38 679次阅读

    机器视觉计算机视觉的区别

    在人工智能和自动化技术的快速发展中,机器视觉(Machine Vision, MV)和计算机视觉(Computer Vision, CV)作为两个重要的分支领域,都扮演着至关重要的角色。尽管它们在
    的头像 发表于 06-06 17:24 1243次阅读

    计算机视觉的主要研究方向

    计算机视觉(Computer Vision, CV)作为人工智能领域的一个重要分支,致力于使计算机能够像人眼一样理解和解释图像和视频中的信息。随着深度学习、大数据等技术的快速发展,计算机
    的头像 发表于 06-06 17:17 850次阅读

    计算机视觉的十大算法

    随着科技的不断发展,计算机视觉领域也取得了长足的进步。本文将介绍计算机视觉领域的十大算法,包括它们的基本原理、应用场景和优缺点。这些算法在图像处理、目标检测、人脸识别等领域有着广泛的应
    的头像 发表于 02-19 13:26 1206次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的十大算法

    机器视觉、工业视觉计算机视觉这三者的关系

    机器视觉、工业视觉计算机视觉这三者的关系
    的头像 发表于 01-24 10:51 1181次阅读
    机器<b class='flag-5'>视觉</b>、工业<b class='flag-5'>视觉</b>和<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>这三者的关系

    工业视觉计算机视觉的区别

    工业视觉主要解决以往需要人眼进行的工件的定位、测量、检测等重复性劳动;计算机视觉的主要任务是赋予智能机器人视觉,利用测距、物体标定与识别等功能实现对于外界位置信息、图像信息等的识别与判
    发表于 01-16 10:06 535次阅读
    工业<b class='flag-5'>视觉</b>与<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的区别