0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

5分钟了解一种更复杂的平衡技术——主动电池均衡

analog_devices 来源:YXQ 2019-08-07 17:45 次阅读

通过被动和主动电池均衡,电池组中的每个单元都得以被有效监控并保持健康的荷电状态(SoC)。这样不仅可以增加电池循环工作次数,还能够提供额外的保护,防止电池单元由于过度充电/深度放电而产生损坏。

被动均衡通过泄放电阻消耗多余的电荷,使所有电池单元都具有大致相当的 SoC,但是它并不能延长系统运行时间。

主动电池平衡是一种更复杂的平衡技术,由于在充电和放电循环期间,电池单元内的电荷得到重新分配,因此电池组中总的可用电荷也得到增加,从而延长了系统运行时间。与被动均衡相比,主动平衡能够缩短充电时间,并减少均衡时产生的热量。

图1表示的是一个典型的处于满容量状态的电池组。在此示例中,满容量指的是充电量达到90%,因为长时间将电池保持在(或接近)100%的容量位置会使其使用寿命下降得很快。而完全放电指的是放电至30%,这样可以防止电池进入深度放电状态。

图1. 满容量。

随着时间的推移,一些电池的特性会变得比其他电池差,从而导致电池组放电特性如图2 所示。

图 2. 不匹配放电。

可以看到,即使有些电池单元仍然残留了很大的能量,但弱电池单元限制了系统运行时间。5%的电池容量不匹配将导致5%的能量不能发挥作用。对于大容量电池而言,就意味着有大量的能量被浪费掉,这种情况对于远程系统和不易维护的系统显得尤为关键。有一部分能量未被使用,还会导致电池充电和放电循环次数增加,降低了电池寿命,并会因为电池频繁更换而产生更高的成本。

通过主动均衡,电荷从强电池单元重新分配到弱电池单元,可以将电池组中的能量完全耗尽。

图 3.通过主动平衡完全耗尽能量。

如果对电池组充电时不进行均衡,弱电池单元会比强电池单元先达到满容量。弱电池单元再一次成为限制因素;此时,它们限制了系统中可容纳的总能量。图4演示了充电时的这种限制。

图 4. 不进行均衡时的充电

主动均衡通过在充电期间对电荷进行再分配,能够使电池组达到满容量状态。需要注意的是,虽然本文没有讨论均衡所需的时间占比和均衡电流对时间的影响等因素,但它们仍需要被重点考虑。

ADI拥有一系列主动电池均衡控制器,分别针对不同的系统要求。LT8584是一款具有 2.5A放电电流的单片反激式变换器,与LTC680x系列多元化合物电池单元监测器配合使用;它可以将电荷从一个电池单元重新分配到整个电池组,也可以分配到电池组中的另一个电池单元或几个电池单元的组合。每个电池单元需要配备一颗LT8584。

图 5. 采用主动均衡的 12串电池组模块

LTC3300是一款独立的双向反激式控制器,适用于锂电池和LiFePO4电池,可提供高达10A的均衡电流。由于控制是双向的,任意电池单元中的电荷都能高效率的与12节甚至更多串联电池单元进行来回传输。单个LTC3300最多可以均衡六个电池单元。

图6. 高效双向均衡。

LTC3305是一款独立的铅酸电池均衡控制器,可同时均衡多达四个电池单元。它通过不断的将第五个存储电池单元(Aux),与其他每个电池单元(一次一个)并联最终达到均衡所有电池单元的目的(铅酸电池很耐用,因此可以采取这个方式)。

图7. 带有可编程电池高低压故障门限的四节电池均衡控制器。

主动电池均衡和被动电池均衡通过监控和匹配每个电池单元的SoC,都能有效的促进电池系统健康。与被动电池均衡只在充电期间消耗多余电荷不同,主动电池平衡能够在充电和放电期间对电荷进行重新分配。因此,主动电池均衡能够延长系统运行时间,还能够提高充电效率。主动电池均衡需要的解决方案往往更复杂,尺寸也更大,而被动电池均衡则更具成本效益。

无论哪种方式更符合您的应用需求,ADI都能够提供相应的解决方案,并通过与我们的电池管理IC(如LTC6803和LTC6804)以及其他外围器件配合,为您提供精确、稳健的电池管理系统。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电池组
    +关注

    关注

    5

    文章

    313

    浏览量

    25675
  • soc
    soc
    +关注

    关注

    38

    文章

    4157

    浏览量

    218130

原文标题:化被动为主动,精确又稳健的电池管理系统是这样滴

文章出处:【微信号:analog_devices,微信公众号:analog_devices】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ETA3000 颗芯片均衡两串锂电池,通过级联方式,优点主动均衡,可做到20节电池组的平衡

    `钰泰ETA3000ETA3000是电池平衡ic,个ic是两节的,可以通过级联,实现3节,4节,5节等等的电池组的
    发表于 10-15 16:59

    电池保护板被动均衡主动均衡

    主动均衡是以电量转移的方式进行均衡,效率高,损失小。不同厂家的方法不同,均衡电流也从1~10 A不等。目前市场上出现的很多主动
    发表于 12-05 10:49

    ETA3000颗芯片均衡两串锂电池通过级联方式主动均衡可做到20节电池组的平衡可用于电子烟

    的,平衡电流可以达到2A是一种基于ETA是专利待决专有技术的感应式电池均衡器,与传统的无源平衡
    发表于 09-03 14:05

    钰泰ETA3000电池均衡器IC

    钰泰ETA3000电池均衡器IC ETA3000是电池平衡ic,个ic是两节的,可以通过级联,实现3节,4节,
    发表于 12-04 19:58

    EQM系列主动均衡模块,被动均衡轻松变主动均衡

    `EQM系列主动均衡模块是华荧技术推出的款应用在电池管理系统上的核心零部件,它采用全新架构设计实现电池
    发表于 04-26 20:02

    文详解电池单元主动均衡

    电池单元主动均衡
    发表于 01-25 07:47

    电池管理系统均衡及管理策略

    各设计了一种简单的的控制策略,供大家学习理解之用。被动型均衡被动型均衡原理:被动均衡又称有损均衡,是通过能量消耗,限制电 压最高的
    发表于 04-07 10:43

    钰泰ETA3000首颗双节主动均衡IC,支持动力电池

    ,ETA3000是主动开关式均衡,其均衡电流可以达到1.5A。ETA3000是钰泰半导体独有专利池内的新型电池均衡器,与传统的无源
    发表于 01-08 09:27

    钰泰ETA3001多节电池主动均衡芯片ETA3001均衡启动电压

    一种基于ETA是专利待决专有技术的感应式电池均衡器,与传统的无源平衡技术不同ETA3000利用
    发表于 01-08 09:44

    尊信电子 钰泰ETA3000首颗双节主动均衡IC,支持动力电池

    ,ETA3000是主动开关式均衡,其均衡电流可以达到1.5A。ETA3000是钰泰半导体独有专利池内的新型电池均衡器,与传统的无源
    发表于 02-11 18:08

    什么是主动均衡?通过户外储能均衡案例(ETA300X)了解下!

    长时间的运行下,电池的两极分化越来越严重,电池系统的可用容量还将进步下降。 为了解决这个问题,所以我们用到了均衡
    发表于 06-09 09:23

    一种面向负载平衡主动复制技术

    针对主动复制容错技术中存在资源浪费及请求响应时间长的问题,提出了一种适用于请求-状态相关及请求-状态无关的系统模型、面向负载平衡主动复制
    发表于 04-18 15:28 25次下载
    <b class='flag-5'>一种</b>面向负载<b class='flag-5'>平衡</b>的<b class='flag-5'>主动</b>复制<b class='flag-5'>技术</b>

    电池单元主动均衡

    额外的保护,防止电池单元由于过度充电/深度放电而产生损坏。被动均衡通过泄放电阻消耗多余的电荷,使所有电池单元都具有大致相当的 SoC,但是它并不能延长系统运行时间。 主动
    发表于 01-20 10:59 29次下载
    <b class='flag-5'>电池</b>单元<b class='flag-5'>主动</b><b class='flag-5'>均衡</b>

    主动电池均衡放电期间

    。 被动均衡通过泄放电阻消耗多余的电荷,使所有电池单元都具有大致相当的 SoC,但是它并不能延长系统运行时间。 主动电池平衡
    的头像 发表于 02-22 11:27 2125次阅读
    <b class='flag-5'>主动</b><b class='flag-5'>电池</b><b class='flag-5'>均衡</b>放电期间

    主动均衡技术的优点分析

    在电动汽车的电池管理系统(BMS)中,主动均衡技术一种进阶的电池维护策略,相较于传统的被动
    的头像 发表于 08-29 16:21 689次阅读