0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI、机器学习颠覆未来音乐技术

Dbwd_Imgtec 来源:YXQ 2019-08-08 11:13 次阅读

“我们一般都倾向于认为技术的进步会打破之前存在的东西,但这些通常不会发生,这可能会引导出一种不同的音乐创作方式。”——Jarvis Cocker,前Pulp乐队主唱,独唱艺术家、作家和播音员

近些年来音乐技术的发展趋向于渐进式的变化,对现有的声音合成方法进行不断的迭代改进,比如测序器和音效插件等工具。在某种程度上这个行业充满了相互矛盾,它采用几乎所有先进的CPU资源以便更好的模拟出70年代/80年代的复古装备,一些公司(比如Korg、Roland和Behringer)最近发布了非常具有价格竞争力的产品,比如售价150英镑的半模块化模拟合成器,这些产品和技术正推动企业不断向前发展。

AI机器学习的颠覆性技术也在不断得到应用,这些可以用来模拟一位有成就的表演者或作曲家的创作过程吗?能达到令人信服的效果吗?

2017年5月在未来围棋峰会上人工智能Alpha Go向人类对手展示了完全出乎意料的操作,这一举动可以说震惊了许多围棋玩家,并导致人们开始重新评估如何继续这款游戏。科学博物馆未来音乐技术小组的山姆·波特描述了这次活动的影响。

“这一招实在是太奇怪了,太独特了,太奇异了,太有创意了,它打开了游戏全新的一面,让我们了解如何用另一方式来玩这款游戏。”

神经网络可以进行重构并可能超越传统的期望,但强化学习方法的本质意味着它必然是不透明的,导致的结果在本质上是模糊的和不可预测的。

从谷歌 DeepMind的Wavenet开始就已经有各种各样的尝试来发掘机器学习在声音和音乐领域的潜力,创造可信的语音相当于听觉上的“恐怖谷”现象,因为它既要求语音如何发生的现实综合模型,也要求语调如何表现。对符合上下文的变化进行编码是一个非常巨大的挑战,由于我们对语速、音高或整体表达的不准确十分敏感,我们经常被提醒要注意合成语音的生成本质,Wavenet和微软的神经网路驱动的语音生成演示使用了在人类真实语音上训练过的算法,这使得合成模型能够创造出比传统语音合成方法更令人信服的性能。

谷歌发布神经网络音频合成器Nsynth

在Wavenet的引领下,谷歌的Magenta团队使用Tensorflow(一款GPU加速的机器学习库)来尝试构建一个音频合成器,Nsynth(神经网络合成器)分析现有的音频对列构建出新的音频,但是明显不同于音频源,编码阶段会考虑源音频的质量和特性以及它们的时序特性,从而生成传统方式难以输出的音频效果。

上世纪90年代当布莱恩·伊诺(Brain Eno)使用Koan软件制作了他的软盘专辑“新生代音乐1”,SSEYO公司推出的Koan软件一举成名,这是早期采用计算机辅助合成的一个例子,艺术家可以自由的使用他们创造性的想法来选择、编辑、排列或者采用程序的建议来创作音乐。尽管Koan软件完全是采用算法生成的,但它仍是依赖人工操作的生成器,这类生成器仅限于特定范围的音乐形式,而Amper Music和IBM推出的Watson Beat可以通过分析真实的音乐短语和“语法”来生成音乐,这要归功于机器学习工具(比如Magenta)背后的处理能力,这种方式创作的音乐即使不能完全让人信服,但已经接近图灵测试的音乐等效标准了。

“采用AI制作我们喜欢的音乐真的可以吗?布莱恩·伊诺(Brain Eno)认为这大概需要6到7年的时间。”——萨姆·波特,音乐家兼作家

“无人之地(一款科幻题材的游戏)”中的生物生成表

“无人之地”中的所有生物都是由程序生成的,每一个都需要一个真实的声音来与其匹配。

机器学习在这一性能方面可能蕴藏着巨大的潜力,在游戏“无人之地”中我们使用了物理建模的声道来创造程序生成的声音,然而为了让声音听起来更有说服力,需要向演奏乐器一样操作合成器,使用算法来驱动性能,比如Perlin噪声转换为基于时间的音频域效果很差,导致听起来像机器人,我们采用基于MIDI性能捕捉短语库来驱动声乐的解决方案已经足够有效了,但是如果能够采用基于多种音频源的训练过程来学习并推断出不同的情绪状态将是一个更好的方案。

这些技术所带来的影响不仅仅局限在音频生成或音乐领域,Mastering (母带处理)是音乐发行前的最后一个混音处理阶段,在这一阶段音轨会应用一系列DSP效果,比如压缩、EQ等,使得音乐达到最后的润色效果,母带处理和发行公司LANDR就利用机器学习技术,创作者可以选择一种母带风格从而最好的匹配正在处理的音乐类型,这些风格来自于基于现有音频源训练的过程。

机器学习在音频制作领域的应用还有很多,从创造出新的声音到模仿人类的声音,以及最后阶段的出版发行,这些工具的共同之处在于能够增强创作过程而不是完全取代它。这其实提供了新的创造机会,同时音乐家们可以根据自己的创作决策形成新的音乐风格。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31444

    浏览量

    269837
  • 机器学习
    +关注

    关注

    66

    文章

    8438

    浏览量

    132901

原文标题:AI如何引领音乐技术的未来发展?

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    意味着在“具身智能”领域,还没有哪一个玩家能像O社那样能站在AGI的制高点。 具身智能从字面上拆解为“具身+智能”,指的是一种将机器学习算法适配至物理实体,从而与物理世界交互的AI范式。通俗一点讲,就是
    发表于 12-19 22:26

    AI技术驱动半导体产业升级,芯原布局未来智能计算领域

    随着AI技术在高性能计算、机器学习和深度学习等领域的广泛应用,对高性能芯片的需求日益增长,这直接推动了半导体产业的迅猛发展和升级。在2024
    的头像 发表于 11-06 13:53 512次阅读

    AI人工智能技术主要应用于什么方面,给未来带来什么影响?

    解决复杂的决策问题到优化日常生活中的各类服务,AI的应用领域广泛而深入,以下将详述其主要应用场景及所带来的深远影响。 在工业生产中,人工智能通过机器技术、自主控制和预测性维护等手段重塑了制造业格局。基于
    的头像 发表于 11-05 18:11 596次阅读

    AI干货补给站 | 深度学习机器视觉的融合探索

    在智能制造的浪潮中,阿丘科技作为业界领先的工业AI视觉平台及解决方案提供商,始终致力于推动AI+机器视觉技术的革新与应用。为此,我们特别开设了「AI
    的头像 发表于 10-29 08:04 262次阅读
    <b class='flag-5'>AI</b>干货补给站 | 深度<b class='flag-5'>学习</b>与<b class='flag-5'>机器</b>视觉的融合探索

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2519次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 1076次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大模型 :通常包含数十亿甚至数万亿的参数,模型大小可以达到数百GB甚至更大。这些模
    的头像 发表于 10-23 15:01 925次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术AI能够处理和分析海量
    发表于 10-14 09:12

    RISC-V如何支持不同的AI机器学习框架和库?

    RISC-V如何支持不同的AI机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    AI引擎机器学习阵列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在凭借 AI 引擎机器学习 ( ML ) 架构来提供突破性
    的头像 发表于 09-18 09:16 439次阅读
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    嵌入式系统的未来趋势有哪些?

    嵌入式系统是指将我们的操作系统和功能软件集成于计算机硬件系统之中,形成一个专用的计算机系统。那么嵌入式系统的未来趋势有哪些呢? 1. 人工智能与机器学习的整合 随着现代人工智能(AI
    发表于 09-12 15:42

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来

    设备的运行状况,生成各种维度的报告。 同时,通过大数据分析和机器学习技术,可以对业务进行预测和预警,从而协助社会和企业进行科学决策、降低成本并创造新的价值。 当今时代,数据无处不在,而时间序列数据更是
    发表于 06-25 15:00

    音乐大模型掀起AI音乐创作热潮,AI让“一语成歌”成为可能

    电子发烧友网报道(文/李弯弯)随着大模型技术的发展,AI音乐生成悄然而生。音乐生成是一个结合了人工智能技术
    的头像 发表于 05-30 01:01 4098次阅读

    NVIDIA Isaac机器人平台升级,加速AI机器技术革新

    NVIDIA Isaac机器人平台近期实现重大升级,通过引入最新的生成式AI技术和先进的仿真技术,显著加速了AI
    的头像 发表于 03-27 10:36 727次阅读