0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习算法帮助我们做出更好的决定

XcAI_avfline 来源:YXQ 2019-08-14 16:47 次阅读

机器学习算法,可以帮助我们做出更好的决策,通过将人类的偏见最小化,使用更完整的数据集,或者弥补我们决策软件中已知的缺陷。

虽然古老的计算机科学公理“垃圾输入,垃圾输出”仍然适用,但精心设计的具有完全代表性数据集的系统,可以帮助我们做出更明智的决策。

考虑一下招聘场景。Textio开发了一种软件产品,帮助人们写工作描述,这种描述最有可能吸引有资格、有能力做特定工作的人。

这家公司由一个微软 Office 老员工团队创办,在你写内容时在屏幕上提供指导。

例如,当你在某个特定的时间点,使用某个性别比另一个性别更有吸引力的词语时,Textio 会提醒你。

诸如详尽、强制、无畏之类的词汇已经被统计学证明,会让你的人才库偏向男性。

Textio还指出了地区差异。

例如,如果你用“好的职业道德”来描述你的理想候选人,这可能会吸引圣何塞的工人,但会阻止华盛顿地区的工人。如果你的目标是埃弗雷特的候选人,最好不要说这句话。

鉴于Textio可以访问广泛的数据集,比如现有的职位描述、应用统计数据和工作表现数据等等,可以帮助你消除招聘过程中的盲点。

机器学习还可以帮助你,找出是什么让你最优秀的员工如此高效,并帮助你在第一天就把新手变成专家。

Cresta.ai观察最有效的销售人员在聊天时如何与潜在客户互动:弄清楚潜在客户需要什么,推荐产品,回答问题。

这个系统提取最佳实践方案,并将其转化为实时建议,供经验不足或效率较低的销售人员在与潜在客户互动时使用。

在 Intuit 这样的客户部署中,销售团队的转化率上升了20% ,培训时间节省了66%。

换句话说,与没有使用这个系统相比,销售代表在培训较少的情况下完成了更多的业务。

这个系统对销售人员和客户都有好处。

正如一位 Intuit 代表所描述的,“我担心使用这个系统会破坏与客户的个人关系或对话,但是将这个人工智能作为工作助手,有助于展开个性化对话。”

机器学习也有助于提高非常熟练的专业人员的决策能力,例如寻找特定矿物的地质学家。

锂离子电池(如手机、笔记本电脑或电动汽车中的电池)内部可能含有一种叫做钴的矿物质,这种矿物质可以帮助电池在多次充放电循环后依旧保持性能。

随着特斯拉的Gigafactory等电池工厂生产更多的锂离子电池,钴的需求正在迅速增长。

不幸的是,世界已知钴储量的65%在刚果民主共和国,这个国家政治不稳定,据报道可能有多达40000名儿童在开采钴矿。

如果我们在刚果民主共和国政府中有一个可靠的政治伙伴,我们可能会努力改善所有矿工的工作条件,但是我们也应该寻找新的钴来源。

这正是KoBold Metals正在做的事情。

通过查看许多不同的数据源,如地形数据、在某一地区生长的植物、磁和电磁模式、水和天气模式、岩石类型等等,在我们派遣非常昂贵的探险队开采之前,这个系统可以帮助地质学家找到钴的可能存在的位置。

另一个很好的例子是金融技术。

向首次借款人发放贷款是有风险的,尤其是在第三世界国家,如肯尼亚、坦桑尼亚或尼日利亚。

在这些国家,信用机构要么不存在,要么无法接触到所有人,致使很多人无法获得传统贷款。

我们的投资组合公司Branch,一直致力于在这些领域为首次借款人提供贷款。

在没有信用机构的情况下,Branch试图根据借款人的移动应用程序使用情况和通过其移动应用程序收集的行为来确定借款人的资格。

使用机器学习,Branch分析了数据,并确定了几个行为指标,这些指标已经被证明,可以预测贷款偿还的可能性。

以下是一些令人惊讶的因素或行为,使得Branch的借款人更有可能偿还贷款的特征:

使用三星或HTC等品牌的手机

节约使用电池

晚上接大部分电话

收到的短信比发送的多

Facebook账户更活跃

在手机上运行赌博应用程序

除了最后一个指标,列表上的大多数指标都不太令人惊讶。

数据发现,如果一个人是赌徒,并且手机上有赌博应用,他们更有可能偿还贷款。

如果你觉得这有点违反直觉,你并不孤单。

这只是证明了一个人类决策者是多么的不靠谱,这是由于个人偏见和过去的经验造成的。

这是否意味着算法在所有决策方面都比人类好?还没有。

从组织样本中比较癌症诊断性能的研究显示,例如哈佛医学院2016年6月发表的这一项研究和谷歌AI Health研究员2018年10月发表的另一项研究,当人类与算法竞争时,始终提供最准确诊断的是人类+算法,它们的表现优于单独的算法和单独的人类。

为了让你了解医生用来诊断癌症的方法,这里有两张并排的图片。左边的一张显示了已经染色的组织切片。

右边的图显示了计算机视觉算法叠加“热图”的结果,热图显示了它认为更多(红色)或更少(蓝色)含有癌组织的区域。

为什么人类使用的算法比单独的算法和单独的人表现更好?一种可能性是,这些算法改进决策的方式,与语法和拼写检查有助于提高我们的写作水平的方式相似。

一般来说,这些检查器能很好地发现我们的打字错误和语法错误(真正的优点)。但是偶尔,检查器会标记出错误(假阳性)或者给出一个你不同意的语法暗示。

在这些情况下,你最终将重写检查器。这种过程最终的结果是,写出的东西比任何一方自己写出的东西都要好。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4613

    浏览量

    92948
  • 机器学习
    +关注

    关注

    66

    文章

    8420

    浏览量

    132682
收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多
    的头像 发表于 12-30 09:16 140次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习
    的头像 发表于 11-15 09:19 470次阅读

    【每天学点AI】KNN算法:简单有效的机器学习分类器

    过程,其实就是一个简单的分类问题,而KNN(K-NearestNeighbors)算法正是模仿这种人类决策过程的机器学习算法。|什么是KNN?KNN(K-NearestNeighbo
    的头像 发表于 10-31 14:09 333次阅读
    【每天学点AI】KNN<b class='flag-5'>算法</b>:简单有效的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>分类器

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2493次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    LIBS结合机器学习算法的江西名优春茶采收期鉴别

    以庐山云雾茶和狗牯脑茶的明前茶、雨前茶为对象,研究激光诱导击穿光谱结合机器学习的茶叶鉴别方法。将茶叶茶,水数据融合可有效鉴别春茶采收期,且数据融合后表现出更好的稳定性和鲁棒性,LIBS结合机器
    的头像 发表于 10-22 18:05 263次阅读
    LIBS结合<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>的江西名优春茶采收期鉴别

    常用的ADC滤波算法有哪些

    ADC(模数转换器)滤波算法在信号处理中起着至关重要的作用,它们能够帮助我们提取出有用的信号,同时滤除噪声和干扰。以下是常用的ADC滤波算法详解,这些算法各具特色,适用于不同的应用场景
    的头像 发表于 10-08 14:35 398次阅读

    日常生活中,IP代理中的哪些功能可以帮助我们

    IP代理作为一种网络通信技术,具有多种功能,可以帮助我们在多个方面提升网络使用的便利性和安全性。IP代理在保护隐私、提高网络访问速度和性能、提供网络安全保障、方便网络管理以及支持爬虫和数据采集、网络营销等方面都具有重要作用。
    的头像 发表于 09-14 08:04 191次阅读

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    。 时间序列的单调性理论是数学求导。下面是使用EWMA分析股票价格变动,以决定买入还是卖出。通过仿真数据,这种指数移动平均的技术剔除了短期波动,有助看清股票整体趋势。 通过对本章学习,对时间序列的研究目的、方法与特征有了较全面梳理了解。其中代码仿真更可以辅
    发表于 08-17 21:12

    【「时间序列与机器学习」阅读体验】全书概览与时间序列概述

    的各种活动和事件,通常包括时间戳、事件类型、来源、目标等信息。日志文件可以帮助我们理解系统的运行情况,如检测系统性能问题、网络安全事故、系统故障等。 日志分析与多维时间序列的关系主要体现在以下几个方面
    发表于 08-07 23:03

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1082次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是一个经典数据集,在统计学习
    的头像 发表于 06-27 08:27 1665次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    的从业经验。 针对工业界的相关从业者,本书将为你提供实用的工具和技术,以帮助更好地处理时间序列数据。你将学习到如何使用不同的模型和算法来预测未来、检测异常、进行聚类等。本书中包含大
    发表于 06-25 15:00

    机器学习怎么进入人工智能

    ,人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 333次阅读

    为什么深度学习的效果更好

    导读深度学习机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度学习的有效性并非偶然,而是植根于几个
    的头像 发表于 03-09 08:26 630次阅读
    为什么深度<b class='flag-5'>学习</b>的效果<b class='flag-5'>更好</b>?

    什么是机器学习?它的重要性体现在哪

    机器学习是一种人工智能(AI)的子领域,旨在使计算机系统通过经验自动学习和改进,而无需明确地进行编程。它侧重于开发算法和模型,使计算机能够从数据中提取模式、进行预测和
    的头像 发表于 01-05 08:27 1608次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?它的重要性体现在哪