0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能芯片明明是硬件,和软件又有什么关系?

HPlG_walimaker 来源:陈年丽 2019-08-16 11:39 次阅读

对于人工智能芯片产业来说,仅有好的硬基础是不够的,在硬基础上再做出好的软件,才能做得更好。”在日前举行的“2019中国AI芯片创新者大会”上,中国信息通信研究院云计算与大数据研究所人工智能部副主任王蕴韬强调说。

记者随后采访了中科院半导体所类脑计算研究中心副主任龚国良,他也表示,人工智能芯片产业的发展确实应该注重软硬件协同。

软件是人工智能芯片的灵魂

“国内人工智能芯片的硬件设计水平与国外接近,但软件生态却是薄弱环节。”龚国良告诉记者。

人工智能芯片明明是硬件,和软件又有什么关系?

龚国良介绍,人工智能芯片本身只起到加速的作用。除了少量定制化人工智能芯片具备一定功能外,大多数人工智能芯片本身并不具备功能,它们的功能必须结合相关软件来实现。

算法是软件的重要组成部分,它相当于人工智能芯片的灵魂。除了算法本身,软件层面还包括算法的移植、芯片驱动程序、配套软件工具、人机交互界面等等。这就像电脑不仅仅需要好的处理器,还需要好的操作系统一样。

龚国良介绍,在人工智能芯片涉及的软件领域,国内的算法开发平台仍比较少,一些已有算法开发平台,在人机交互与资源管理方面,与国外相比仍有一定差距。另外,一些前瞻性人工智能芯片的核心算法、核心架构,还有待提升。

“软件和使用侧结合得更多。人工智能芯片的硬件固然重要,但是如果软件做得好,可能更胜一筹。”王蕴韬介绍,一些非常厉害的算法团队和软件团队,甚至可以在十分普通的芯片上,实现神经网络加速芯片的加速效果。

软硬结合才能避免尴尬局面

对于国内人工智能芯片产业而言,软硬件匹配度不够好的情况并不罕见。

“很多人工智能芯片在设计之初的想法是很好的,但是上市后却发现用户不太买账,软件环节做得不够好可能是原因之一。”龚国良告诉科技日报记者。

以算法为例,用户的“美好理想”一般是,利用算法开发平台把算法训练出来后,只需进行傻瓜式移植,就能将其应用在人工智能芯片上,产品随之迅速出炉。但实际情况是,算法移植到人工智能芯片时需要进行硬件化改造,让它适应芯片的硬件。

“这个环节需要花费很大的精力,要么应用方来做,要么芯片的设计方来做。”龚国良说,目前芯片研发团队大多是硬件出身,在软件支持方面花费的精力相对较少,重视程度依然不足。

在王蕴韬看来,把真正好的算法,落地到人工智能芯片硬件中,需要进一步实现软硬件协同发展,而这一领域还存在非常大的市场空间。

科技日报记者了解到,在人工智能芯片软硬件协同方面,国内的大公司一般做得比较好。因为软件方面例如算法的移植和人工智能芯片的驱动,实现起来有一定难度,需要专门的团队去研发。

对于提升人工智能芯片的软硬件协同发展,龚国良认为,应结合人工智能芯片产品的定位选择不同策略。

“如果人工智能芯片面向的应用场景比较窄,那么在硬件做好的基础上,设计一些软件工具就可以实现应用。但如果是通用型人工智能芯片,支撑的算法范围非常宽泛的话,就需要很好的软件团队与之匹配,否则就会导致芯片的硬件很强大,用户却不买账的尴尬局面。”龚国良建议。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    452

    文章

    50194

    浏览量

    420699
  • 人工智能
    +关注

    关注

    1789

    文章

    46633

    浏览量

    236977

原文标题:重力称|探究轮胎抬起的刻度和物体重量之间的关系

文章出处:【微信号:walimaker,微信公众号:瓦力工厂机器人】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    周末收到一本新书,非常高兴,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 《AI for Science:人工智能驱动科学创新》这本书的第一章,作为整个著作的开篇
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    芯片设计的自动化水平、优化半导体制造和封测的工艺和水平、寻找新一代半导体材料等方面提供帮助。 第6章介绍了人工智能在化石能源科学研究、可再生能源科学研究、能源转型三个方面的落地应用。 第7章从环境监测
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能
    发表于 07-29 17:05

    机器视觉和人工智能关系与应用

    机器视觉和人工智能关系是一个广泛而深入的话题,涉及到计算机科学、电子工程、光学、图像处理、模式识别等多个领域。 一、机器视觉和人工智能的定义 机器视觉的定义 机器视觉是一种使计算机能够理解和解
    的头像 发表于 07-16 10:27 714次阅读

    人工智能与大模型的关系与区别

    在科技日新月异的今天,人工智能(AI)已成为推动社会进步的重要力量。而在人工智能的众多分支中,大模型(Large Models)作为近年来兴起的概念,以其巨大的参数数量和强大的计算能力,在多个领域展现出了非凡的潜力。本文旨在深入探讨人工
    的头像 发表于 07-04 16:07 3141次阅读

    神经网络和人工智能关系是什么

    神经网络和人工智能关系是密不可分的。神经网络是人工智能的一种重要实现方式,而人工智能则是神经网络应用的广泛领域。本文将介绍神经网络和人工智能
    的头像 发表于 07-03 10:25 878次阅读

    神经网络和人工智能关系

    化时代的到来。本文旨在深入探讨神经网络和人工智能之间的关系,通过分点表示和归纳,结合相关数字和信息,为读者提供全面的视角。
    的头像 发表于 07-01 14:23 629次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    人工智能 工业检测:芯片模组外观检测实训part1 11分40秒 https://t.elecfans.com/v/25609.html *附件:芯片模组外观检测实训.pdf 人工智能
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    .pdf 人工智能 软件平台使用指导A:AidLux平台介绍 8分29秒 https://t.elecfans.com/v/25505.html *附件:AidLux平台使用介绍.pdf 人工智能
    发表于 04-01 10:40

    人工智能、机器学习、深度学习之间有什么关系呢?

    人工智能是由约翰·麦卡锡(John McCarthy)于1956年提出来的,当时的定义是“制造智能机器的科学与工程”。 现在的人工智能是指“研究、开发用于模拟、延伸和扩展人的智能的理论
    发表于 02-26 11:34 350次阅读
    <b class='flag-5'>人工智能</b>、机器学习、深度学习之间有<b class='flag-5'>什么关系</b>呢?

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    人工智能软件测试中的应用

    随着信息技术的飞速发展,软件测试的重要性越来越凸显。传统的软件测试方法往往需要耗费大量时间和人力,而且难以发现一些深层次的缺陷。为了提高软件的质量和可靠性,越来越多的企业开始探索人工智能
    的头像 发表于 12-26 11:02 564次阅读