0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

热钱不断涌入自动驾驶行业,一场合纵连横后的大战爆发在即

浙大光电 来源:陈年丽 2019-08-29 09:51 次阅读

热钱还在不断涌入自动驾驶行业,一场合纵连横后的大战爆发在即。

无论是通用-本田-Cruise、丰田-Uber,还是大众-福特-Argo、现代起亚-亚马逊-Aurora、Waymo-雷诺日产联盟或是百度,都有希望在这场战争中称王。

而激光雷达公司,将有望成为这些巨头们背后最大的「兵工厂」。

寻找激光雷达行业应用的「金矿」

自 2007 年以来,Velodyne 开始为全球大大小小的自动驾驶项目提供激光雷达。

截止今年 3 月的数据,Velodyne 激光雷达销量已经突破 3 万台,销售额达到 5 亿美元(约合 34.5 亿人民币)

——这个销量,在全球范围内超过所有竞争对手的出货量总和,覆盖的应用范围主要包括自动驾驶、测绘、工业港口、物流和安防等领域。

然而,这还不是激光雷达最大的金矿。

今年 6 月,法雷奥对外透露:已经从四家全球主流车企获得总价值约为 5 亿欧元(约合 38.7 亿元人民币)的订单。

这些订单的生命周期预计将延续至 2024 年到 2025 年,并最终可能带来总值 10 到 15 亿欧元的长期业务(即可追加的订单)。

目前,法雷奥的 4 线产品 ScaLa(第一代)是达到车规级应用标准的激光雷达,且已实现量产,并于 2017 年开始装配到拥有 L3 级自动驾驶功能的 A8 车型上。

现在来看,激光雷达最终被安装到两类汽车上:

一类是进行自动驾驶测试的无人车,这个市场对激光雷达的线数要求高,愿意开出更高的价格,但是订单规模小;

一类是汽车厂商推出的具有辅助驾驶、自动驾驶功能的量产车,因为面向消费者,所以订单量大。但这类车对激光雷达的体积、大小和可靠性期望非常高,往往会要求激光雷达获得各种认证

对于第二类市场来说,为了保证系统拥有更多安全冗余,汽车厂商更有愿意在激光雷达驱动的 ADAS 系统上买单。

多数主流车企表示,在 2025-2030 年间,他们能够承受的激光雷达价格在 1000 美金之内。

全球范围内的激光雷达公司,正在朝这一目标推进。

一个趋势是,不少激光雷达公司在为自动驾驶公司提供解决方案的同时,也开始部署更多 ADAS 功能,试图成为 L2/L3 级自动驾驶方案中的补偿选项。

以摄像头为核心的 ADAS 系统,依然有局限

一直以来,特斯拉 CEO Elon Musk 都将激光雷达当成「异端」。

他甚至直言:激光雷达对自动驾驶而言是徒劳无益的;激光雷达是一种又贵又没必要的产品。

果真如此吗?

佐思产研研究总监周彦武在一篇名为:《ADAS 漫谈:为什么自动驾驶必须用激光雷达》的文章中,解释了以摄像头为核心的 ADAS 和自动驾驶系统有诸多局限:

首先,视场角(Field of View,FOV) 角度过大导致车辆有非常明显的盲区。

FOV 一般是越大越好,但要考虑到畸变的问题。一般 CMOS 传感器镜头 FOV 不超过 76 度。超过 76 度是广角镜头,广角镜头在近处有明显失真;超过 120 度则是鱼眼镜头,图像边缘有严重失真。

为了解决 FOV 的问题,沃尔沃和特斯拉选择了三目系统。

沃尔沃的三目系统,FOV 视角分别是 140 度、45 度和 34 度。特斯拉 FOV 为 150 度、50 度和 25 度。但这个系统依然解决不了近距离盲区问题。

其次,车辆在低速情况下,单目摄像头系统对突然出现的静止目标或缓慢移动目标(一般是行人)基本无效。

Mobileye 明确指出 50 公里/时以上行人识别才工作。为何需要如此高的速度?

这是因为,机器视觉主要针对动态目标识别,特别是汽车领域,优先识别动态目标如车辆、行人、自行车、电动车等。

了解上述背景后,我们才能理解激光雷达在自动驾驶系统中所扮演的角色,才会明白为什么汽车行业总强调:

做到 99% 的识别率还不够,我们需要达到 99.99999……% ——而激光雷达就是小数点后几位的最强保障。

在这种情况下,激光雷达的首要价值,便是作为摄像头和毫米波雷达之外的安全冗余。

2017 年,奥迪推出号称全球首款 L3 级别自动驾驶车型奥迪 A8,这款车型也让行业关注到全球第一款为量产车准备的激光雷达——法雷奥 ScaLa。

目前业内主流的 ADAS 方案使用的是 Mobileye 提供的视觉芯片

虽然 Mobileye 对车道线及车辆尾部识别的准确度较高,但对部分形状奇特,具有本土特色的改装车、三轮车等车型,系统仍旧无法进行匹配识别。

毫米波雷达分辨率不足、对非金属类物品存在一定漏检几率,无法保证车辆精准判断自身及周围障碍物的位置关系。

奥迪 A8 搭载的法雷奥 ScaLa 激光雷达则解决了上述问题。

这也在一定程度上可以解释:为什么在去年 11 月,一向以视觉为主的 Mobileye 斥资千万美元收购了一家激光雷达相关的公司 Eonite Perception。

这是一家专门开发利用激光雷达进行 3D 地图绘制和跟踪的软件。依托 Eonite Perception 的工程师,Mobileye 成立激光传感器部门——LiDAR.AI

正如这个部门的命名,这起收购将加强 Mobileye 在激光雷达领域的技术,弥补 Mobileye 在视觉领域的不足。

过去,Mobileye 的 ADAS 系统依赖摄像头,但现在包括车企、科技巨头等在内的自动驾驶公司更偏好使用激光雷达。

因为激光雷达能在任何光照条件下准确绘制出汽车运行的区域,结合摄像头和雷达,自动驾驶汽车就能清楚了解实时路况。

激光雷达公司开始注重 ADAS 功能的开发

「市场正在发生改变,我们现在要将一部分精力分给 ADAS 终端。」今年 3 月,Velodyne 创始人 David Hall 对外界表示。

他认为,Velodyne LiDAR 在 L4/L5 市场有自己的优势,现在的情况下 Velodyne 的产能足够满足用户需求。

而 ADAS 市场即将迎来新的热潮,在这里 Velodyne 的激光雷达能收获丰厚的利润,因此守着 Level 4/5 市场并非明智之举。

在今年的 CES 上,Velodyne 发布近距离激光雷达产品 VelaDome。

这款产品可以覆盖车辆整个侧面的近距离范围,对车辆近距离/死角处的行人或者自行车检测效果显著。

Velodyne 还希望将自己的激光雷达结合软件打入 ADAS 市场,从而拿出像特斯拉 AutoPilot 和通用 Super Cruise 一样有竞争力的 ADAS 方案。

激光雷达软件系统 Vella 就是这一背景下推出的产品。 Vella 主要配合 Velodyne 的固态激光雷达 Velarray 使用,而后者能够嵌入安装在汽车挡风玻璃后面或者保险杠位置。

Velodyne 称,「相较于摄像头+毫米波雷达系统,其实现的 ADAS 性能将发生革命性变化。」

进军 ADAS 市场,考虑到产品迭代与性能全面性的问题,Velodyne 还通过收并购来扩大商业版图:

今年 7 月,Velodyne 收购位于旧金山的高精地图创业公司 Mapper.ai 的知识产权资产,双方将合作开发更安全的 ADAS 系统。Mapper.ai 的高精地图和定位技术将加速 Vella 软件的开发。

这起收购看起来与 Mobileye 收购 Eonite Perception 有异曲同工之妙。

目前,Velodyne 的这套解决方案可让客户解锁 ADAS 的更多功能,包括行人和自行车避让、车道保持辅助(LKA)、自动紧急制动(AEB)、自适应巡航控制(ACC)、交通堵塞辅助(TJA)等等。

Luminar CEO Austin Russell 对现在的激光雷达也有自己的判断。

在他看来,Waymo 等公司引领的自动驾驶出租车和卡车项目一时半会还不成气候,因此未来几年 ADAS 市场更具吸引力。

今年 6 月,Luminar 推出了一个整合硬件和软件的激光雷达平台 Iris(虹膜)。

为了打造这套解决方案,Luminar 调动了 60 位软件工程师进行配合研发。Iris 平台分为两个版本:

用于高级驾驶辅助系统(ADAS)的激光雷达解决方案,成本不超过 500 美元;

用于高级别自动驾驶(L4/L5)的方案,成本不超过 1000 元。

Luminar 的车载激光雷达和软件将于 2022 年开始大规模交付,其中新款激光雷达体积只有现在产品三分之一,而且能无缝整合进量产车前格栅、车顶或车头大灯中。

2018 年 8 月,Cepton 牵手日本最大汽车照明灯公司 Koito,为后者提供定制的小型激光雷达解决方案,将激光雷达安装进车灯中。

Cepton 与 Koito 的合作,也主要是从 ADAS 开始展开,并将延伸到更高级的自动驾驶;与 May Mobility(低速园区车)的合作则是面向 L4 级自动驾驶。

三年前,Innoviz 就对外推出了两款 MEMS 固态激光雷达样品:InnovizPro 和 InnovizOne。

InnovizPro 是一款基于 MEMS 扫描技术的高性能固态解决方案,可为汽车、测绘和其他应用提供出色的性能和价值。

InnovizOne 则是一款易于车辆无缝集成的车规级解决方案,可为 3 级到 5 级自动驾驶提供 3D 感知能力。2021 年,宝马决定将在 Level 3 级自动驾驶汽车上使用 InnovizOne 激光雷达。

从过去高举高打主推 L4/L5 级自动驾驶,到如今开发更多带有 ADAS 功能的激光雷达解决方案,激光雷达公司通过产品「下沉」的方式,调整自己的市场策略:

在软件层面,更加注重 ADAS 功能,开发杀手级应用(例如给激光束编码);

在硬件层面,既有适用于 L3 及以下的激光雷达方案,又有适合 L4/L5 级自动驾驶的产品。

这么做的目的,激光雷达公司按照激光雷达技术既有路线和发展速度,推出符合市场需求的产品。另一方面,配合一线主机厂和 Tier1 循序渐进推动自动驾驶演进。

为主动安全而生,激光雷达本质是 3D 传感器

通过加入激光雷达来提高 ADAS 系统的安全冗余——这就引申出激光雷达的出路:足够便宜,能进入前装。如此,激光雷达就能获得宝贵的装车机会。

这实际上带来的是双重好处:

首先,投入的资金实际上由消费者分担(当然消费者也获得更好的 ADAS 功能和体验);

其次,真实场景替代仿真,获取真正的海量数据。

为了让车厂更容易接受激光雷达,并降低后者对量产车型安装激光雷达的难度,激光雷达公司提供 ADAS 功能供车企使用,也就成了顺理成章的选择。

由于激光雷达点云是 3D 立体的,包含了距离、尺寸、位置等信息,数据量相比视觉少,所以激光雷达公司提供 ADAS 功能,技术难度相对会小一些,不需要进行复杂的图像处理。

以博世 MPC2 为例(如上图),其摄像头输出一帧图片是 1920*1080 像素,每帧图片代表 200 万个空间点(每个像素对应的角分辨率是 0.03 度)。

以 Velodyne 128 线激光雷达为例,其角分辨率为 0.2*0.11 度,扫描一周后,点数仅为 23 万个空间点(水平 360 度/0.2 度*垂直 128 像素)。

因而,不需要复杂的图像处理、对算力要求极低,激光雷达可以利用自身嵌入式处理器,完成对 ADAS 算法处理。

十四年前,David Hall 发明的这种新型雷达传感器,在 DARPA 自动驾驶挑战赛中一战成名,也间接助推了自动驾驶的蓬勃发展。

今天,无论是高校、车企、Tier1、科技公司、新创公司在进行自动驾驶相关探索和研发时,都愿意为这个传感器买单。

但这给外界留下了一个刻板的烙印:认为激光雷达就是专门为高级别自动驾驶打造的传感器。

事实上,激光雷达并不专属于 L4/L5 级自动驾驶。

从今天看来,我们可以有新的理解:激光雷达是为智能驾驶、主动安全而生的 3D 传感器。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光雷达
    +关注

    关注

    967

    文章

    3938

    浏览量

    189593
  • 自动驾驶
    +关注

    关注

    783

    文章

    13682

    浏览量

    166136
收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶中的数据标注类别分享

    的必要条件,数据采集、数据标注服务已成为支撑自动驾驶热潮必不可少的环。本文将以数据标注的视角,通过标贝科技自研平台标贝数据标注平台,展示自动驾驶常见的几种标注
    的头像 发表于 11-22 15:07 405次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    自动驾驶演变下,汽车连接器市场如何扩容?

    新能源汽车智能化演变进程不断加快,自动驾驶应用市场正在成为高速连接器行业的新蓝海。 今年,自动驾驶赛道似乎格外火热,大模型架构不断迭代、智驾
    的头像 发表于 10-31 13:34 104次阅读
    <b class='flag-5'>自动驾驶</b>演变下,汽车连接器市场如何扩容?

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶汽车的安全问题变得非常重要,这样你才能回答“自动驾驶汽车安全吗”和“
    的头像 发表于 10-29 13:42 438次阅读
    <b class='flag-5'>自动驾驶</b>汽车安全吗?

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    自动驾驶HiL测试方案介绍#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月12日 18:02:07

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术中不可或缺的部分。以下是FPGA在
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    自动驾驶步入L3阶段 磁性元器件行业有何新机遇?

    车企进入上述名单,拿到了L3级自动驾驶试点的“入场券”,自动驾驶市场正式步入了个全新的发展阶段。 近年来,自动驾驶市场呈现出爆发式的增长态
    的头像 发表于 07-17 09:29 331次阅读
    <b class='flag-5'>自动驾驶</b>步入L3阶段 磁性元器件<b class='flag-5'>行业</b>有何新机遇?

    中级自动驾驶架构师应该学习哪些知识

    个新兴且不断发展的职业。随着技术的进步,这领域将继续吸引更多人才,推动自动驾驶技术的发展。 自动驾驶架构师在设计和开发
    的头像 发表于 06-20 21:47 259次阅读

    初级自动驾驶架构师应该学习哪些知识

    个新兴且不断发展的职业。随着技术的进步,这领域将继续吸引更多人才,推动自动驾驶技术的发展。 自动驾驶架构师在设计和开发
    的头像 发表于 06-20 21:45 263次阅读

    特斯拉自动驾驶风波再起:加州监管机构指控引关注

    特斯拉自动驾驶虚假营销风波再起:加州监管机构指控引关注   近日,特斯拉再次成为公众关注的焦点,不过这次并非因为其在电动汽车技术上的创新突破,而是因为一场涉及自动驾驶虚假营销的争议。据6月11日报道,特斯拉正面临加州有关
    的头像 发表于 06-11 16:53 779次阅读

    华为小米自动驾驶Occupancy Network对决

    2023年6月计算机视觉学术圈CVPR举办两自动驾驶研讨会,个是端到端自动驾驶研讨会 (End-to-End Autonomous Driving Workshop),另
    的头像 发表于 04-28 14:35 965次阅读
    华为小米<b class='flag-5'>自动驾驶</b>Occupancy Network对决

    未来已来,多传感器融合感知是自动驾驶破局的关键

    的Robotaxi运营。这标志着L4级自动驾驶迎来了新的里程碑,朝着商业化落地迈进了大步。中国的车企也不甘落后:4月7日,广汽埃安与滴滴自动驾驶宣布合资公司——广州安滴科技有限公司获批工商执照。广汽埃安
    发表于 04-11 10:26

    LabVIEW开发自动驾驶的双目测距系统

    LabVIEW开发自动驾驶的双目测距系统 随着车辆驾驶技术的不断发展,自动驾驶技术正日益成为现实。从L2级别的辅助驾驶技术到L3级别的受条件
    发表于 12-19 18:02

    自动驾驶“十问十答”

    ? 很多人下意识的认为自动驾驶是为了提升大家日常出行的舒适度和便捷性,实际上,自动驾驶的推动最开始的主要原因之是为了【安全】,据国外研究表明,其中95%事故与人的因素有关,近70%由人为因素造成,所以
    的头像 发表于 11-29 07:40 966次阅读
    <b class='flag-5'>自动驾驶</b>“十问十答”