新药研发一直是耗时又耗钱的复杂工程,但现在,科学家们似乎找到了破解之道——引进人工智能技术。
据《麻省理工科技评论》杂志9月3日报道,在一次引入AI技术的新药研发中,人工智能制药初创公司Insilicon Medicine的一个团队与多伦多大学的科学家合作,从开始研发新的靶向药,到完成初步的生物学验证,仅仅花了46天时间。这项研究结果已发表在本周的《自然生物技术》杂志上。
这一里程碑式的研究证实,AI 技术可以帮助加速药物开发,这意味着,专利保护期限的延长,从而提高了药物开发的经济性。如果这种方法可以推广,它将被制药行业广泛采用。
AI协助将8年药物研发时间缩短到46天
基于两种流行的人工智能技术,生成对抗网络和强化学习,该团队在这次药物开发中引进了一个新的AI系统——生成张力强化学习(GENTRL)。
研究人员选择将DDR1激酶(一种在上皮细胞中表达的酪氨酸激酶)作为靶点,这是一种与组织纤维化疾病密切相关的蛋白质。确定目标后,GENTRL系统用21天时间设计出了3万个不同的分子结构,然后通过查阅此前研究和专利中对药物靶标起作用的已知分子,优先筛选出了可以在实验室合成的新分子结构。
以《深度学习能够快速识别有效的DDR1激酶抑制剂》为题的研发结果已发表在《自然生物技术》杂志上。
在GENTRL设计合成的6种候选DDR1 抑制剂化合物中,有4 种化合物在生化分析中具有活性。而在下一阶段的体外细胞实验中,4种具有活性的化合物,有2 种展现了预期的 DDR1 抑制能力,且能有效降低与纤维化进程有关的标志物含量。通过对比,最具潜力的1种化合物又进一步在小鼠体内实验中得到成功验证。
从最初的靶点确定、潜在新药分子结构筛选、合成到临床前的生物学验证,GENTRL系统将传统药物研发方法需要至少8年完成的工作,缩短到了仅需46天。
2013 年诺贝尔化学奖得主、斯坦福大学结构生物学教授 Michael Levitt 评价道,“这篇论文无疑是一个令人印象深刻的进步,很可能适用于药物设计中的许多其他问题。基于最先进的强化学习,我也对这项研究的广度印象深刻,因为它涉及到分子建模、亲和度测量和动物研究。”
AI取代药物化学家角色正成为主流
《麻省理工科技评论》杂志指出,这项里程碑式的研究或将改变新药研发面临的“费钱费时又费劲儿”的困境。
这项里程碑式的研究或将改变新药研发面临的困境。
“人工智能将对制药行业产生革命性的影响,我们需要更多的实验验证结果来加速这一进展,”人工智能领域众多核心技术和初始概念发明者、瑞士人工智能研究所教授Jürgen Schmidhuber表示。
众所周知,将一种新药推向市场需要花费高昂的金钱和时间成本,根据塔夫茨药物开发研究中心(Tufts Center for the Study of drug Development)的数据,一种新药从开始研发到最终上市可能需要10年时间,耗资高达26亿美元,且绝大多数候选药物在测试阶段就会以失败告终。
因此,减少研发周期和经济成本,对制药领域药物研发活动的成功至关重要。据《福布斯》杂志报道,使用Insilicon Medicine的方法,此次药物的研发成本仅仅为15万美元。
Insilicon Medicine希望,能在将AI深度学习带入药物研发过程中。
美国能源部人类基因组计划首席科学家、波士顿大学教授Charles Cantor 表示,关于人工智能 AI 在改善医疗保健和开发新医疗工具方面的前景,存在着许多夸张的说法。然而,这项最近发表在《自然生物技术》杂志的成果的确具有重要意义。
它首先证明了,人工智能能够取代通常由药物化学家扮演的角色,而这个角色往往存在人手不足;其次,药物开发速度的加快意味着专利保护期限延长,从而提高了药物开发的经济性。“如果这种方法可以推广,它将成为制药工业中广泛采用的方法,” Cantor博士说道。
当然,对于全球的药物研发工作而言,这只是第一步。尽管这是一个里程碑,显示了人工智能具有识别候选药物的潜力,但在任何有潜力的药物被批准用于治疗之前,仍需要多年的临床试验和数百万美元的调研。
AI技术能够快速识别有效的DDR1激酶抑制剂。
“这篇论文是我们在人工智能驱动药物研发路上的一个重要里程碑。我们从2015年开始从事AI合成化学的工作,但当Insilicon的理论论文在2016年发表时,所有人都对此持怀疑态度。而现在,这项技术正在成为主流,我们很高兴它正在动物实验中被验证。当这些模型被整合到全面的药物研发过程中时,它们适用于众多目标靶点。我们正与领先的生物技术公司合作,将进一步推动合成化学和合成生物学的极限,”论文第一作者、Insilico Medicine 创始人兼 CEO Alex Zhavoronkov 博士表示。
-
人工智能
+关注
关注
1791文章
46820浏览量
237463
原文标题:新能源的未来是阿斗,还是卧龙?
文章出处:【微信号:Micro_Grid,微信公众号:电力电子技术与新能源】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论