0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NLP领域的难处

姚小熊27 来源:lw 作者:CV智识 2019-09-10 09:48 次阅读

NLP领域公司大多成立在2015年、2016年左右,正逢AI热潮,入局并不算晚,但目前的融资大多还停留在A轮或者B轮,而同时期的语音、计算机视觉公司们却已经在纷纷冲刺上市。

2019年初,全球创投研究机构CBInsights发布了32家全球AI独角兽公司名单,其中美国有17家,中国有10家,商汤科技、云从、云知声、寒武纪等纷纷上榜。

经过政策、资本的快速助推,计算机视觉领域、语音领域纷纷跑出多个独角兽,而作为“皇冠上的明珠”的NLP领域却难见独角兽的影子。

众多的NLP领域公司大多成立在2015年、2016年左右,正逢AI热潮,入局并不算晚,但目前的融资大多还停留在A轮或者B轮,而语音、计算机视觉公司们已经在纷纷冲刺上市。

8月5日AI语音公司云知声对CV智识证实,正在接受科创板上市辅导;8月25日晚,计算机视觉公司旷视科技向港交所递交IPO招股书。

AI主要包含两个层面,一个是认知智能,一个是感知智能。比如语音识别、计算机视觉属于感知智能的层面,而 NLP 则属于认知智能层面。

为何NLP公司们跑的最慢?当前的落地应用到底发展到了什么程度?CV智识带着这样的疑惑与业内人士聊了聊目前的现状。

缺乏相对独立且足够大的场景

“NLP缺少相对独立且足够大的场景”,深度好奇创始人吕正东告诉CV智识,“它往往会变成一个引擎或者一个特定功能上的服务,这个的确制约了它的市场。”

所谓相对独立且足够大的落地场景,就像安防市场之于整个计算机视觉领域。

据中商产业研究院发布的《2018-2023年中国安防行业市场前景及投资机会研究报告》数据统计显示,我国安防行业市场规模从2012年的3240亿元增长到2017年的5960亿元,年均复合增长率达13%左右。

千亿需求驱动商业发展,技术突破加上场景自然结合,独角兽自然就容易脱颖而出。

反观NLP,众所周知,特别纯粹的应用就是机器翻译,众多行业公司产品也扎堆而生。

2016年底,科大讯飞推出晓译翻译机,直到2019年5月,讯飞翻译机更新至3.0;搜狗的旅行翻译宝在2018年1月正式亮相,9月又推出了搜狗翻译宝Pro;猎豹移动在2018年7月发布了小豹AI翻译棒。

出境旅游的语言沟通的确是很多游客的最大瓶颈,游客对智能翻译机的需求也的确存在,“只是用户的身上已经存在了智能手机、智能手表等不同的智能硬件,对于用户来说,真的愿意仅仅为了满足单一的翻译需求再增加一个硬件吗?”一位NLP领域产品经理对CV智识表示。

为了一个简单的需求,用户需要付出的价格并不便宜:小豹AI翻译棒售价229元,搜狗翻译宝Pro售价2299元,讯飞翻译机3.0售价3499元。

这与用户一直以来习惯的免费在线翻译服务正好相反。

从互联网时代的百度在线翻译、谷歌翻译等产品来看,日常翻译已经成为了一个带有天然的平台性或者免费服务性质的业务。

且根据中商产业研究院发布的《2018-2023年中国翻译机行业市场前景研究报告》预计我国翻译机市场规模将从2016年的396亿增长到2020年的561亿元,远没有安防和身份验证市场那么大。

除了市场本身有待验证之外,有业内人士对CV智识表示,“翻译机是一个强技术驱动的产品,并不是语音和翻译的简单串联,语言具有复杂多意性的特征,很难实现标准化和一致性。”

去年4月10日,腾讯翻译君在实时翻译过程中,不仅没有翻译成很通顺的中文,而且出现了几乎占满了几乎一整页的“for”。

腾讯翻译君在之后承认,包括神经网络机器翻译在内的深度学习算法,目前在原理上还有一定不确定性,在特定的情况下有一定的概率引发翻译偏差。

“语音翻译中的语音本身也有自己的技术,它并不是为了后面的翻译专门准备的,因此它在很多时候有自己的优化目标,但这个优化目标有可能在某些方面和翻译不一致,因此在两者结合过程中也需要技术上的再次突破。”

“想打造好的NLP技术非常难。NLP不是一个单一的学科,里面其实会牵扯到深度学习,认知领域,情感模型等等。而且语言的场景太复杂了,就拿中文来说,同一句话放在不同的场景里会有完全不同的解读。”竹间智能创始人兼CEO简仁贤也对CV智识坦言。

智能助手:如何平衡技术与隐私?

“近年来NLP、语音、视觉有融合发展的趋势”,有业内人士对CV智识表示。

除了纯粹的机器翻译场景之外,NLP与其他AI技术融合落地的智能助手以及智能客服成为了重要的落地场景。

2014年亚马逊Echo首次登场,2016、2017年苹果Homepod、谷歌Home、微软Invoke陆续“进场”,智能助手成为各家智能音箱的最大卖点。

随后国内传统硬件厂商和互联网厂商更是争相入局“圈地”,包括小米、阿里巴巴、联想、京东等,相继推出自己的智能音箱。

奥维云网(AVC)全渠道推总数据显示,2019年上半年,中国智能音箱市场在售机型数达到86个,销量为1556万台。除了智能音箱之外,智能助手也成为智能手机的标配。

小爱同学智能语音助手赋予小米手机多项智能化功能;OPPO在今年最新推出的ColorOS 6上也加入了语音助手Breeno;2016 年 11 月,伴随着华为旗舰机型 Mate 9 的发布,华为智能助手正式推出;vivo也从 X21手机开始,在系统中加入智能助手Jovi。

市场研究公司Strategy Analytics报告显示,到今年年底共有47.7%的智能手机将会搭载AI智能语音助手,到了2023年,全球有超过90%的智能手机将会搭载全新的语音助手。

在这场如火如荼的争夺中,无论是巨头还是创业公司纷纷进入,创业公司大多选择解决方案提供商的方式与巨头合作。但不少业内人士表示,这大概率只会成为巨头的游戏。

“智能助手通常会受到它所搭载的设备和系统制约,硬件和系统商拥有比创业公司更高更多的权限。并且很多巨头已经组建自己的技术团队,它们还拥有海量的数据以及实验场景。”吕正东表示。

“智能助手整个模式和技术都已经已经比较白菜化了,手机上的这种对话其实除了语音之外,其他的东西都很难做出非常深的技术了,就是要靠数据积累起来,落地比较多的场景。”有业内人士表示。更何况,以当前NLP技术发展来看,很难让智能助手真的“智能”。

我们经常会遇到答非所问的“智障”表现,比如,你问“美国总统是谁?”智能助手会说“特朗普”,但当你问它“美国总统是特朗普吗?”它就说“不知道。”

除此之外,智能助手还被人诟病的一个问题在于:隐私。

今年7月,据《卫报》报道,苹果的一名承包商称,为了提升Siri的产品能力,苹果会雇佣外部承包商审听录音,其中包括了Siri在意外被激活时收录的私密对话,例如医疗信息、毒品交易和其它信息。

之后苹果公司发表了一份官方声明称,只有不到1%的Siri响应会被分析以改善服务。

苹果Siri并不是第一个因偷听嫌疑而被“讨伐”的对象。

之前,来自谷歌雇佣的人工监听团队的爆料人向比利时荷兰语国家广播电视台(VRT)提供的1000条对话录音显示,有153条都是在Google Assistant被意外唤醒的情况下录制的。

面对频频发生的隐私泄露事件,用户开始担忧智能设备的隐私问题。据MusicWatch的一项调查显示,约有一半(48%)的受访者表示他们担心与智能音箱相关的隐私问题。物联网的发展,信息的边界被无限扩大,但当隐私问题引起争议时,显然很多厂商并未做好准备。

智能客服:闭环能力大于单点突破

人工客服为主体的阶段,大部分机构采取人海战术提供“7*24小时”的咨询服务,成本高、效率低。

互联网时代,大量搭载标准化功能模板的APP、网页端客服产品也并未解决产品体验问题。

随着深度学习等前沿算法被引入到NLP领域,智能客服逐渐开始替代人工客服。

千亿市场,资本纷纷用钱投票。根据前瞻产业研究院数据,截止2018年5月28日,国内包括智能云客服以及客服机器人在内的公司共计69家,累计融资额35.16亿元。

从类型上来看,有从PaaS云通讯延伸到SaaS客服的公司,比如环信、容联七陌;有互联网巨头旗下的智能客服业务部门,比如网易七鱼、腾讯企点;也有单纯的云客服公司,比如Udesk、快商通;也有客服机器人公司,比如云问、追一科技等。

智能客服的客户多为传统行业,业务相对复杂,在NLP技术开始从服务场景、交互方式等重构客服市场时,也不得不面对究竟是以项目制还是标准化软件产品为主的选择。

前者客户接受度高,但需要占用大量人力成本而且难以规模化复制,后者人力成本低可实现规模化复制。

追一科技创始人兼CEO吴悦对CV智识表示,项目制源于两个方面:

一层是商业模式因素,目前传统行业的大公司基本还是希望项目制结算,这个是现状,但长期看,订阅的模式也会逐渐增加。

另外一层是产品化能力不足的原因,中国的企业软件的基础比较薄弱。

过去20年,IT行业的资源都投入到了互联网行业,直到最近几年,资本和人力才逐步投入到企业软件领域。

他表示,企业软件产品化能力和人才沉淀还需要一点时间,当AI产品化程度足够高的时候,项目制形式的规模化和毛利也不会是问题。追一科技现在既做深度定制,也做标准化产品输出,通过银行、保险、券商、能源、地产、汽车的头部客户合作,形成标杆效应,不断积累经验、数据,逐渐打磨出标准化产品。

晓多AI客服创始人江岭曾在接受小饭桌采访时表示,更偏爱SaaS模式,“做传统大企业客户本地化部署项目周期太长,成本比较高,业务增长也比较缓慢,更重要的是得不到数据反馈来形成闭环,因此我们没有选择这个方向。”简仁贤也表示,“定制化虽然是需求上的变革,但在制作层面平台化肯定不可避免。”

在这样的思路下,竹间研发了Bot Factory?平台,能够让客户们可以自己快速根据场景去做定制化。

与消费互联网不同的是,智能客服市场是一个长跑赛道,“如果你希望比别人跑得快的话,那首先是数据的积累,不管是死数据还是活数据的积累,模型其实很多时候是拿数据堆起来的;第二是模式要跟上,包括怎么把智能客服产品去交给客户,需要怎么去维护等。”吕正东表示。

One more thing

无论是智能助手还是智能客服,在交互的过程中,总会发现除了任务问答之外,还会有闲聊功能。

拆解机器人的技术,你会发现,当你一个问题或一句话过去,它会做一个分发,很多时候它会分发到闲聊这个模块上,启动闲聊功能。”

竹间智能高级AI研究员赵景彦曾分享过一个数据:机器人上线了以后大概是60%在做闲聊,40%在做一些正规的业务问答。有些公司就将这部分的闲聊功能拆解出来单独做成一个产品,比如微软推出的小冰。

小冰是一个基于EQ的对话机器人,诞生于2014年,由微软(亚洲)互联网工程院打造。8月15日,微软刚刚发布了第七代小冰。

但开放域聊天技术本身要比任务驱动的技术更为复杂,“目前整体的NLP技术就像深度学习出来之前的计算机视觉技术所处的阶段”,吕正东对CV智识表示。

在当前众多智能助手尚且显得“智障”的现实下,闲聊的效果可想而知。

还有业内人士表示,“这并不是一个刚需产品,意义不大。”对于当前的NLP应用来说,缺乏相对独立且足够大的场景加上技术相对后发是硬伤,但正因为NLP领域尚待突破,寒武纪副总裁刘道福曾表示,这个领域复制之前平台创业的方式,即从学术到商业的路线的可能性仍在。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 独角兽
    +关注

    关注

    0

    文章

    181

    浏览量

    26527
  • nlp
    nlp
    +关注

    关注

    1

    文章

    487

    浏览量

    22010
收藏 人收藏

    评论

    相关推荐

    nlp逻辑层次模型的特点

    NLP(自然语言处理)逻辑层次模型是一种用于理解和生成自然语言文本的计算模型。它将自然语言文本分解为不同的层次,以便于计算机更好地处理和理解。以下是对NLP逻辑层次模型特点的分析: 词汇层次 词汇
    的头像 发表于 07-09 10:39 320次阅读

    nlp神经语言和NLP自然语言的区别和联系

    神经语言(Neuro-Linguistic Programming,NLP) 神经语言是一种心理学方法,它研究人类思维、语言和行为之间的关系。NLP的核心理念是,我们可以通过改变我们的思维方式和语言
    的头像 发表于 07-09 10:35 708次阅读

    nlp自然语言处理基本概念及关键技术

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。NLP技术在机器翻译、情感分析、语音识别
    的头像 发表于 07-09 10:32 509次阅读

    nlp自然语言处理框架有哪些

    自然语言处理(Natural Language Processing,简称NLP)是计算机科学和人工智能领域的一个重要分支,它致力于使计算机能够理解和处理人类语言。随着技术的发展,NLP领域
    的头像 发表于 07-09 10:28 495次阅读

    nlp自然语言处理的主要任务及技术方法

    自然语言处理(Natural Language Processing,简称NLP)是人工智能和语言学领域的一个分支,它研究如何让计算机能够理解、生成和处理人类语言。NLP技术在许多领域
    的头像 发表于 07-09 10:26 856次阅读

    LLM模型的应用领域

    和算法的优化,LLM在各个领域取得了显著的成果。 自然语言处理(NLP) 自然语言处理是LLM最重要的应用领域之一。NLP旨在让计算机能够理解、生成和处理自然语言文本。LLM在
    的头像 发表于 07-09 09:52 518次阅读

    nlp自然语言处理模型怎么做

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,它涉及到计算机对人类语言的理解和生成。随着深度学习技术的发展,NLP领域
    的头像 发表于 07-05 09:59 526次阅读

    nlp自然语言处理模型有哪些

    自然语言处理(Natural Language Processing,NLP)是计算机科学和人工智能领域的一个重要分支,旨在使计算机能够理解、解释和生成人类语言。以下是对NLP领域一些
    的头像 发表于 07-05 09:57 610次阅读

    nlp自然语言处理的应用有哪些

    自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个分支,它致力于使计算机能够理解和生成自然语言。随着技术的发展,NLP已经在许多领域
    的头像 发表于 07-05 09:55 2445次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度学习简介 深度学习是一种基于人工神经网络的机器学习方法
    的头像 发表于 07-05 09:47 811次阅读

    NLP技术在机器人中的应用

    在人工智能的广阔领域中,自然语言处理(NLP)技术作为连接人类语言与机器智能的桥梁,正逐渐渗透到我们日常生活的方方面面,其中机器人技术便是一个尤为突出的应用领域NLP技术不仅赋予了机
    的头像 发表于 07-04 16:04 419次阅读

    NLP技术在人工智能领域的重要性

    智能的桥梁,其重要性日益凸显。本文将从NLP的定义、发展历程、核心技术、应用领域以及对人工智能领域的深远影响等多个维度,深入探讨NLP技术在人工智能
    的头像 发表于 07-04 16:03 425次阅读

    NLP模型中RNN与CNN的选择

    在自然语言处理(NLP领域,循环神经网络(RNN)与卷积神经网络(CNN)是两种极为重要且广泛应用的网络结构。它们各自具有独特的优势,适用于处理不同类型的NLP任务。本文旨在深入探讨RNN与CNN
    的头像 发表于 07-03 15:59 421次阅读

    什么是自然语言处理 (NLP)

    自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个重要分支,它专注于构建能够理解和生成人类语言的计算机系统。NLP的目标是使计算机能够像人类一样
    的头像 发表于 07-02 18:16 1045次阅读

    NLP领域的语言偏置问题分析

    摘要进行全面的统计分析,发现不同语言背景的作者在写作中的词汇、形态、句法和连贯性方面有明显的差异,这表明NLP领域存在语言偏置的可能性。因此,我们提出了一系列建议,以帮助学术期刊和会议的出版社改进他们对论文作者的指南和资源,以增强学术研究的包容性和公平性。
    的头像 发表于 01-03 11:00 414次阅读
    <b class='flag-5'>NLP</b><b class='flag-5'>领域</b>的语言偏置问题分析