0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能商业化,既是难题也是机遇

倩倩 来源:lq 作者:雷锋网 2019-09-19 10:20 次阅读

人工智能商业化,既是难题也是机遇。

当下的人工智能商业化主要有两条路,一条路是“AI+”,即人工智能技术本身产品化,创造或者革新一类产品,另一条路是“+AI”,是传统产业,尤其是实体行业生产流程再造,从而完成降本增效,华为云选择的就是后一条道路。

9月18日华为全联接大会期间,华为云业务总裁郑叶来在主论坛做了题为“跨越裂谷,共建普惠AI”的演讲,并提出行业AI商用落地的四大要素,同时他进一步解释了华为云EI集群服务所拥有的强劲算力,华为云工业智能体正式亮相。

华为云业务总裁郑叶来

技术优势能否转化成市场优势,这决定着人工智能厂商将去往何处。

AI商用落地四要素

郑叶来在现场表示,AI领域蓬勃发展,但投资热度与商业应用之间仍存在巨大的裂谷。

2018年以前,对AI领域的投融资均匀的分布在各个行业或技术领域。2018年后,大量的投融资逐渐向几个头部行业集中。

华为云在500+项目实践中发现,行业AI项目要成功实施,需要基于应用场景、相关ISV/SI、设备或流程、AI平台提供方组成的行业AI落地的商用模型,也由此,华为云总结出AI商用落地的四个要素。

要素一:明确定义商业场景

即明确项目的商业目标,界定清晰的范围边界,场景可闭环、可预测具备充足的数据资料。明确定义商业场景是AI落地的第一步。

在早期人工智能落地的过程中,几乎所有的厂商都走过弯路,哪些领域拥抱人工智能意愿强烈,哪些场景能平衡投入和收益,哪些场景测试和现实之间存在巨大不确定性等等,人工智能对大多数企业都是全新的技术,充满未知,没有厂商能直接摸准人工智能落地的确定性规则。

华为云总结了一套选择场景的方法论:

首先要明确该场景核心要解决的问题是什么,是质量、成本还是效率问题;

其次,解决的问题要有清晰的边界,要便于用数学去刻画和表达;

再次,这个场景应该是一个闭环的、可以预测的,不能是开放不可预知的;

最后,要具备解决这个问题需要的充足和完备的数据与行业知识。

去年的全联接大会上,华为就明确了三个AI能实现较好效果的场景,分别是海量重复、专家经验及多域协同,今年则是可商用场景的扩大化,一边从0到1找新场景,一边从1到N实现场景复用。

全联接大会上Atlas900展示

要素二:触手可及的强劲算力——华为云EI集群

从某种程度上来说,这几年的人工智能技术热潮,解决了人工智能是否能用的问题,然而效率、成本、易用性等等都是人工智能进一步发展的挑战。另一方面,算力的稀缺问题还没解决,新算法仍在迭代,AlphaFold、Bert、BigGAN对算力需求更大,言而总之,当前算力仍处于不充沛、不经济、难获取的状态。

以华为举例,目前华为内部日均AI训练作业任务超过4000个、训练时长超过3.2万小时, 而且还有大量的作业在排队。

华为云预测,未来,算力的需求每年将增加10倍左右,缺口亟待解决,算力也是目前可预见的限制人工智能发展的最大难题。

华为在本届大会上更新了计算产业战略,并且将其放到和联接同等地位,继去年连发昇腾910和310后,象征着“暴力美学计算力”的Atlas900集群今次正式发布,而且将会以云服务的形式对外开放,可按需使用、即时开通。

Atlas900代表着“一力降十会”的打法,硬生生用新架构解决旧算力问题。据华为介绍,基于Atlas900的华为云EI集群服务是当前全球最快的AI训练集群,由数千颗昇腾910处理器构成,只需59.8秒就可以完成典型网络ResNet-50的训练,比第2名快15%。

以天文研究为例,天体识别涉及P级数据的存储和运算,使用传统模式训练P级别天文数据中识别新的星体的模型要耗时四个星期。使用“华为云EI集群服务”可以将识别星体的模型训练时间缩短至分钟级。

华为云参与了“SKA”(平方公里阵列射电望远镜)项目,天文学家要从20万颗星星中,找出某种特征的星体相当困难,需要169天的工作量,而用上Atlas 900,只用10秒,就从20万颗星星中检索出了相应特征的星体,这就是“暴力美学计算力”。

华为云EI集群巅峰算力的背后,华为工程师们从底层硬件到软件构架全栈优化,包括梯度同步与反向计算并行;数千颗处理器-TOR-SPINE,无收敛线性高速交换;与云计算、存储,网络高效协同。

要素三:持续进化的AI服务

AI时代,构建一个生产运行与开发训练闭环的在线系统非常关键,能让模型持续适应环境的变化,成为持续进化的AI。例如,华为云全流程模型生产服务ModelArts通过AI持续迭代框架,提供端边协同能力,加速企业AI化进程。

要素四:组织与人才的适配

AI的智慧来源于人类智慧数字化,要遵重以人为本的初心,适配相应的人才、组织和流程。例如,深圳机场应用华为云EI来建设机位智能分配系统,并让机场指挥员了解EI的决策机制和过程,不仅将指挥员从枯燥重复的操作中解放出来,而且提升了飞机靠桥率,减少了摆渡车的使用,大幅提升旅客体验。

基于这四个要素的判断,华为云正式发布工业智能体,定位是工业制造行业的智能化新引擎,引擎共分三部分,基于知识图谱的智能认知引擎、基于AI模型的智能预测引擎、基于运筹规划的决策优化引擎,来将诸多难以落地应用的技术应用到工业场景。

公有云的短板战略

“未来的云服务一定是短板战略,集中度一定会越来越高”,郑叶来谈及公有云行业的下一步竞争。企业客户不会因为一项专长选择云厂商,更要求云厂商无短板,短板决定了未来公有云厂商的极限。

公有云本身就是重资产投入的行业,目前头部厂商都是有其他资金来源的大厂商,也部分说明了公有云业务的重资产属性,而随着业务竞争的白热化,从前端到后端,从上层到底层的全面竞争,正掏空部分公有云厂商的钱包。

行业竞争的态势往往是,头部对标,第二梯队遭殃,这在公有云行业已经有一些苗头。不管是互联网出身的云厂商,还是IT出身的云厂商,都在芯片级别做文章,对客户的在线服务越极致,对自己的硬件管控就要越精准,不管是出于成本还是效率,芯片战争已经隔空打响。

郑叶来也提到,早期做云的公司重新做IT、做芯片、做硬件。“云服务是华为用 IT 手段形成价值的闭环,你付出了什么,应该得到什么,云服务还是原来的生意,但是换了商业模式,更好地跟客户沟通。”

外界对华为一直强调做云服务的商业逻辑也理解更深,曾任IT产品线总裁的郑叶来在任时曾投资过多款芯片,这些都成为当下华为云的芯片层级优势。

华为云EI产品部总经理贾永利

华为云EI产品部总经理贾永利表示,华为有了自己的芯片,在全栈技术整合一定能做得非常好,将来还可以与海思定制化芯片,在芯片垂直整合比多个厂家去拼凑、去做肯定性能更好,进而带来客户成本的节约,他同时补充,华为不会因为有了芯片开打价格战,还是以更好的产品和服务赢得客户。

IDC 今年8月份发布的《2019年Q1中国公有云服务市场跟踪报告》,从IaaS+PaaS整体市场份额来看,华为云营收增长超过300%,华为云PaaS市场份额增速接近700%,首次进入Top5。

在马太效应加剧的情况下,后发的华为云底层优势逐渐释放,支撑其位次前进。据业内人士透露,Top5远不是华为云的目标,其内部希望年底能进入中国公有云市场前四。

雷锋网总结,公有云的厚重更胜以往,行业整体进入下一阶段的备战期,兵精粮足则胜,反观之,短板战略将逐渐淘汰,或者降低一部分非头部云计算厂商的生存空间,公有云行业的洗牌期亦不远。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 华为
    +关注

    关注

    216

    文章

    34558

    浏览量

    253291
  • 人工智能
    +关注

    关注

    1797

    文章

    47867

    浏览量

    240839
  • 智能体
    +关注

    关注

    1

    文章

    175

    浏览量

    10638
收藏 人收藏

    评论

    相关推荐

    汽车制造商抢滩人形机器人领域,技术协同与商业化探索

    近年来,随着人工智能技术的飞速发展,特别是大型语言模型的广泛应用,人形机器人迎来了前所未有的发展机遇。这一趋势不仅为机器人的自然语言交互和自动决策能力带来了显著提升,更为其商业化应用
    的头像 发表于 01-24 14:32 1980次阅读

    云知声荣膺2024胡润中国人工智能企业50强

    近日,胡润研究院发布了《2024胡润中国人工智能企业50强》榜单,云知声凭借其在人工智能领域的卓越创新和智能体(Agent)商业化能力荣耀上榜。
    的头像 发表于 01-16 10:02 173次阅读

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制设计。它广泛应用于各种
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能在能源科学中
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    农业、环保等,为人类社会的可持续发展做出贡献。 总结 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们展示了一个充满希望和机遇的未来。在这个未来中,人工智能
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,还促进了新理论、新技术的诞生。 3. 挑战与机遇并存 尽管人工智能为科学创新带来了巨大潜力,但第一章也诚实地讨论了伴随而来的挑战。数据隐私、算法偏见、伦理道德等问题不容忽视。如何在利用AI提升科研效率
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    其在人工智能图像处理领域的应用提供更多支持。 标准和规范推进 :为了降低RISC-V的碎片风险并促进其在全球范围内的广泛应用,标准
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    芯片设计的自动水平、优化半导体制造和封测的工艺和水平、寻找新一代半导体材料等方面提供帮助。 第6章介绍了人工智能在化石能源科学研究、可再生能源科学研究、能源转型三个方面的落地应用。 第7章从环境监测
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制计算,为人工智能
    发表于 07-29 17:05

    萝卜快跑爆火的背后,美格智能如何助力无人车商业化

    无人车商业化进程已经迈入加速赛,美格智能将继续坚持研发投入,与产业伙伴共同构建面向智能汽车产业的新质生产力,助力无人车商业化加速发展!
    的头像 发表于 07-16 16:39 547次阅读

    萝卜快跑爆火的背后,美格智能如何助力无人车商业化

    无人车商业化进程已经迈入加速赛,美格智能将继续坚持研发投入,与产业伙伴共同构建面向智能汽车产业的新质生产力,助力无人车商业化加速发展!
    的头像 发表于 07-16 16:37 1374次阅读
    萝卜快跑爆火的背后,美格<b class='flag-5'>智能</b>如何助力无人车<b class='flag-5'>商业化</b>?

    微软携手法国AI初创企业Mistral推动AI模型商业化

    微软近日与法国人工智能初创企业Mistral达成合作协议,旨在推动AI模型的商业化应用。据悉,微软将提供全方位支持,帮助这家成立仅10个月的公司将其先进的AI模型推向市场。同时,微软还将持有Mistral的少量股份,但具体的财务细节尚未对外披露。
    的头像 发表于 02-28 10:23 637次阅读

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17