0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用深度学习方法,搭建了一个针对厄尔尼诺的统计预测模型

倩倩 来源:lq 作者:澎湃新闻 2019-09-20 15:11 次阅读

中韩研究人员在最新一期《自然》杂志撰文称,他们利用深度学习方法,搭建了一个针对厄尔尼诺的统计预测模型,最早可在一年半前对该现象做出预测,突破了以往长时期预测的难题。

厄尔尼诺主要指太平洋东部和中部热带海洋的海水温度异常持续变暖的现象。其可能造成极端气候和生态系统破坏,例如发生暴雨洪涝、山洪地质灾害、台风、高温热浪、干旱、强对流天气以及城市内涝等等。

由于传统天气预报很难对一年后的情况做出准确预测,厄尔尼诺的长期预测一直是个难题。

上述研究中,Yoo-Geun Ham等三位研究人员开发了一个深度学习模型用以预测厄尔尼诺事件。通常,深度学习模型需要大量训练数据,而预测所需的全球海洋温度分布情况观测数据最早只能追溯到1871年。这意味着,以一个日历月为样本单元,研究人员可用的样本数量少于150个,难以满足模型训练要求。

为了规避有限观测数据的影响,研究人员使用了迁移学习的方法。

他们首先在历史模拟数据上训练卷积神经网络,再迁移至1871年至1973年的气候数据上训练,最终在1984年至2017年的气候数据中进行测试。

研究人员在论文中表示,与当前所使用的预测方法相比,他们算法模型能更准确且更早地预测厄尔尼诺事件,最早可提前一年半。

与此同时,研究人员称该模型可以预测厄尔尼诺事件是否起源于太平洋中部或东部,并识别厄尔尼诺发生前海面温度的变化。

根据国家标准《厄尔尼诺/拉尼娜事件判别方法》(GB/T33666-2017),1950年以来总共发生了19次厄尔尼诺事件,其中8次弱厄尔尼诺事件,11次中等强度及以上厄尔尼诺事件。

厄尔尼诺成因主要来自两方面,一是自然因素,赤道信风、地球自转、地热运动等都可能与其有关;二是人为因素,例如,人类活动加剧气候变暖,也是形成厄尔尼诺的可能原因之一。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 生态系统
    +关注

    关注

    0

    文章

    699

    浏览量

    20702
  • 深度学习
    +关注

    关注

    73

    文章

    5485

    浏览量

    120937
  • 迁移学习
    +关注

    关注

    0

    文章

    74

    浏览量

    5556
收藏 人收藏

    评论

    相关推荐

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的热门研究方向。以下是些FP
    的头像 发表于 10-25 09:22 131次阅读

    AI大模型深度学习的关系

    AI大模型深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 深度
    的头像 发表于 10-23 15:25 346次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要
    的头像 发表于 07-16 18:29 782次阅读

    深度学习模型量化方法

    深度学习模型量化是种重要的模型轻量化技术,旨在通过减少网络参数的比特宽度来减小模型大小和加速推
    的头像 发表于 07-15 11:01 449次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>模型</b>量化<b class='flag-5'>方法</b>

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述
    的头像 发表于 07-14 14:21 1849次阅读

    深度学习模型中的过拟合与正则化

    深度学习的广阔领域中,模型训练的核心目标之是实现对未知数据的准确预测。然而,在实际应用中,我们经常会遇到
    的头像 发表于 07-09 15:56 740次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之,广泛应用于人体活动识别、系统监测、金融
    的头像 发表于 07-09 15:54 685次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,
    的头像 发表于 07-09 10:50 455次阅读

    深度学习中的模型权重

    深度学习充满无限可能性的领域中,模型权重(Weights)作为其核心组成部分,扮演着至关重要的角色。它们不仅是模型
    的头像 发表于 07-04 11:49 884次阅读

    深度学习模型训练过程详解

    深度学习模型训练是复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练
    的头像 发表于 07-01 16:13 1056次阅读

    深度学习模型优化与调试方法

    深度学习模型在训练过程中,往往会遇到各种问题和挑战,如过拟合、欠拟合、梯度消失或爆炸等。因此,对深度学习
    的头像 发表于 07-01 11:41 677次阅读

    利用光电容积描记(PPG)信号和深度学习模型对高血压分类的新方法

    学习方法来对高血压的四阶段进行分类。这里采用的分类方法是:Alexnet、Resnet -50、VGG-16和新的模型:AvgPool_VGG-16。使用这些算法时要考虑到数据集的数
    发表于 05-11 20:01

    如何基于深度学习模型训练实现工件切割点位置预测

    Hello大家好,今天给大家分享下如何基于深度学习模型训练实现工件切割点位置预测,主要是通过对YOLOv8姿态评估
    的头像 发表于 12-22 11:07 740次阅读
    如何基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>模型</b>训练实现工件切割点位置<b class='flag-5'>预测</b>

    如何基于深度学习模型训练实现圆检测与圆心位置预测

    Hello大家好,今天给大家分享下如何基于深度学习模型训练实现圆检测与圆心位置预测,主要是通过对YOLOv8姿态评估
    的头像 发表于 12-21 10:50 1702次阅读
    如何基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>模型</b>训练实现圆检测与圆心位置<b class='flag-5'>预测</b>

    深度学习技术在AI智能分析盒子人数统计中的应用与优势

    在AI盒子的人数统计中,当多人同时出入视野范围时,传统的算法模型很难准确识别和计算人数,容易导致重复统计。为解决这难题,AI算法模型可以采
    的头像 发表于 11-29 09:07 487次阅读