0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA设计中如何在宽频噪声环境,寻找到目标特征数据?

丫丫119 来源:未知 作者:肖冰 2019-09-25 06:50 次阅读

1、背景

数字信号处理是现代通信、雷达和电子对抗设备的重要组成部分。在实际应用中,利用数字信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现多种业务的一体化集成。

在现代雷达系统中,随着有源相控阵和数字波束形成(DBF)技术的广泛应用,接收前端存在大量的数据需要并行处理,并需要保证高性能和低延迟的特点。雷达日益复杂的应用环境,让雷达系统具备自适应于探测目标和环境的能力,数字信号处理部分也需要使用多种更加复杂的算法,并且可以做到算法模块化,以及通过软件配置功能模块的参数,实现软件定义的功能。更大的数据处理带宽能够使雷达获得更高的分辨率,更高的工作频率使得雷达可以小型化,能够在更小的平台上安装,这样对于硬件平台实现也有低功耗的要求。

在电子对抗设备中,可以在最短的时间内对多个威胁目标进行快速分析和响应,同样需要数字信号处理的相关算法具备高实时,高动态范围和自适应的特点。如何在宽频噪声的环境中寻找到目标的特征数据,如何在宽带范围内制造虚假目标实现全覆盖,数字信号的处理性能是至关重要的设计因素。

加速云的SC-OPS和SC-VPX产品,针对5G通信和雷达的数字信号处理的要求,结合Intel最新14nm工艺的Stratix10 FPGA系列,提供了一套完整的硬件和软件相结合的解决方案。SC-OPS产品作为单独的硬件加速卡,通过PCIe插卡的方式实现与主机的通信功能,还可以通过多卡级联的方式实现数字信号的分布式处理方案。SC-VPX产品是由FPGA业务单板、主控板和机箱组成的VPX系统。借助于FPGA可编程的特性,加速云提供了高性能数学加速库FBLAS和FFT的RTL级IP,具有高性能和算法参数可配置的特点实现了多重信号分类(MUSIC)和自适应数字波束形成(ADBF)的核心算法,提高了5G通信和雷达在对抗干扰方面的性能。为了方便客户使用高层语言开发,加速云提供基于FPGA完整的OpenCL异构开发环境,快速实现用户自定义的信号处理加速方案。

图1、加速云SC-OPS和SC-VPX产品

2、方案组成

2.1 基于SC-OPS产品的系统架构图

图2、SC-OPS产品系统框图

基于SC-OPS产品的系统分别由硬件资源层,算法实现层和应用层三部分组成。

SC-OPS加速卡作为主要的硬件平台,采用IntelStratix10 GX2800 FPGA器件,集成2753KLE资源和9.2TFLOPS单精度浮点计算能力。单板支持2个40/100G光口或电口,支持板间通信以及设备间级联。板卡支持8个DDR4-2400MHz 72bits位宽的内存通道(ES支持2133MHz),以及PCIeGen3 16Lane的主处理器通信接口

通过在主机内插入一张或多张SC-OPS加速卡的形式,可以实现不同性能的硬件集成。以一机八卡服务器为例,整机具备73.6TFLOPS的单精度浮点计算能力,并具有纳秒级低延时特性,可应用于高性能的数字信号处理的解决方案。加速云在算法实现层提供了基于FPGA逻辑实现的高性能数学加速库FBLAS,FFT,MUSIC和ADBF核心算法,以上功能模块都是以IP形式提供,并提供相应的API接口函数,通过PCIe接口实现在应用层的调用,从而可以搭建软件定义雷达系统,实现超高性能高灵活的雷达仿真平台。对于更加关注于自定义算法实现的用户来说,加速云还可以支持面向OpenCL的FPGA异构平台开发环境,提供了SC-OPS板卡对应的BSP,用户只需要自行编写OpenCL Kernel和Host程序,即可以快速的实现相关算法的二次开发。

2.2 基于SC-VPX产品的系统架构图

图3、SC-VPX产品系统框图

基于SC-VPX产品的系统,与SC-OPS相比,区别在于硬件平台实现。SC-VPX系统由5块FPGA业务单板,1块X86主控板和6U标准VPX机箱组成。其中FPGA业务单板采用板载XEON-DX86主控和1~2片Stratix10 GX2800 FPGA器件的方案,集成2753K*2 LE资源和9.2 *2 TFLOPS单精度浮点计算能力。每片FPGA支持4个DDR4-2400MHz 72bits位宽的内存通道。前面板支持8个17.5Gbps光口,背板提供32个10.3125Gbps的高速接口,支持业务单板之间的全mesh高速互联网络,X86主控板与业务单板之间采用PCIe和GE的双控通信方案。

用户可以选择加速云提供的主控板和多块FPGA业务单板,整机最高可以支持92TFLOPS单精度浮点处理能力,配合相关算法IP,实现多种数字信号处理的算法或者分布式实现大容量数据处理的算法。由于SC-VPX整套系统都是符合OpenVPX的标准,用户可以添加其他各种功能板卡,包括AD/DA板、RapidIO交换板、存储板等,结合加速云的主控板和FPGA业务单板,组建成一套完整的信号接收处理雷达系统,无论是应用于相关产品还是科研,都可以帮助用户实现系统级的解决方案。

3、系统优势

3.1优异的能效比

能效比是评估数字信号处理时一个关键的指标,即GFLOPS per Watt。表1中罗列了各类设备平台的数字信号处理能力的能效比,加速云采用IntelStratix10 FPGA的方案具备最优的能效比。

类型 系列 单精度浮点
运算能力
功耗 能效比
FPGA IntelStratix10 9.2TFLOPS 120W 76.6 GFLOPS/W
FPGA IntelArria10 1.5TFLOPS 30W 50 GFLOPS/W
DSP TITMS320C6678 160GFLOPS 15W 10.6 GFLOPS/W
GPU NVIDIA Tesla P40 12T FLOPS 250W 48 GFLOPS/W
CPU 至强12核(IntelXEONE5-2697) 219GFLOPS 130W 1.68 GFLOPS/W

表1、各平台数字信号处理能力效能比的对比

3.2 FPGA IO灵活可编程

FPGA最大的特点在于IO可编程,可以提供各种高速和低速IO的协议标准,匹配用户实现多样系统互联的要求。比如SC-OPS板卡的2个高速互联接口,分别可以配置为40GE,100GE或SRIO的标准。SC-VPX FPGA业务单板的背板提供32个10.3125Gbps的高速接口支持与背板间的全mesh网络接口,分别可以配置为10GE,40GE或SRIO的标准。

3.3高性能的算法IP

加速云基于FPGA平台上提供了数字信号处理相关算法的IP,IP的性能决定了数字信号处理系统的性能,包括动态范围,信号损耗,信噪比,延时等因素。

以信号处理中常用的FFT傅里叶变换为例,相比最新的DSP平台,加速云提供的RTL级IP,使用FPGA符合IEEE 754标准的单精度浮点数字信号处理(DSP)单元,可以实现更低的计算时间。

FFTSize PerformanceofComputingFFT (time, ms) using TMS320C6678
1 core 2 cores 4 cores 8 cores
16K 0.473 0.261 0.159 0.131
FFT Size Performance of Computing FFT (time, ms) using FPGA
1 PE 2 PEs 4 PEs 8 PEs
16K 0.16 0.04 0.01 0.003

表2、DSP和FPGA平台实现FFT算法的计算时间对比

以下是加速云提供的基于FPGA实现高性能数学加速库FBLAS的相关性能。可以看出,借助FPGA天然的并行处理的优势,加速云提供的算法IP,可以帮助用户实现数字信号处理系统的快速优化,极大缩短了用户产品Time-to-Market的时间。

算法名称 参数 数据格式 处理性能
矩阵求逆 144*144维复数 FP32 120us
矩阵求逆 72*72维复数 FP32 53.6us
矩阵求逆 24*24维复数 FP32 10.32us
矩阵求逆 12*12维复数 FP32 3.76us
矩阵QR分解 64*64维复数 FP32 46.41us
矩阵QR分解 16*16维复数 FP32 4.99us
矩阵QR分解 8*8维复数 FP32 2.5us
特征值分解(基于QR分解,16次迭代) 64*64维复数 FP32 5200us
特征值分解(基于QR分解,16次迭代) 16*16维复数 FP32 150us
特征值分解(基于QR分解,16次迭代) 8*8维复数 FP32 65us
协方差矩阵(快拍数K=256,通道数N=8) 8维复向量 FP32 30us
协方差矩阵(快拍数K=256,通道数N=16) 16维复向量 FP32 60us
协方差矩阵(快拍数K=256,通道数N=64) 64维复向量 FP32 128us
线性方程求解 200维 FP64 420us

表3、FPGA实现高性能数学加速库FBLAS性能示例

3.4完整的OpenCL异构开发环境

加速云SC-OPS和SC-VPX产品都可以支持面向OpenCL的FPGA异构平台开发环境,提供全面的数学库支持,解决了传统FPGA遇到的时序收敛、DDR存储器管理以及PCIe主处理器接口等难题。另外加速云也支持将高性能算法IP作为定制化组件,与OpenCLKernel集成在一起,提供灵活的算法配置解决方案。

4、应用案例

4.1多重信号分类(MUSIC)

MUSIC算法是经典的空间谱估计算法,实现波达方向估计(DOA)的相关应用。在电子侦察和电子对抗等对实时性要求严格的领域中,如何选用合适的平台实现并满足系统的响应处理速度,成为了设计者颇为头疼的问题。整个MUSIC算法计算复杂度和灵活度都很大,而且电子对抗系统都有浮点处理的要求,所以大多用户会采用DSP处理器的方案,处理时间停留在ms量级。加速云采用Intel集成全新浮点计算单元的FPGA,全硬件实现了基于MUSIC算法的空间谱估计DOA全部算法(MUSIC算法是基于加速云高性能数学加速库FBLAS搭建的,所有组成IP都可以单独调用)。相比DSP处理器,极大提升了MUSIC算法的实时性,超过10倍以上的性能改进。

图4、FPGA实现MUSIC算法的处理流程

MUSIC算法实现的相关性能如下:

·特征值和特征向量的数值相对Matlab中EIG函数计算结果的偏差均小于10-5
·算法实现以单精度浮点为主,结合部分双精度浮点
·全部处理时间<120us(TI6678的处理时间是ms级)

4.2自适应数字波束形成(ADBF)

随着有源相控阵雷达的广泛应用,如何有效增强期望信号和抑制无用信号,也是设计者需要考虑的问题。ADBF技术利用天线阵元的采样数据,自适应更新信号的权值,使阵列天线形成特定的期望形状。由于天线阵元通道数量大,需要实现海量数据的计算,相关平台实现必须具有高集成度、高数据吞吐率和高数据并行计算的特点。

图5、DBF原理示意图

加速云借助高性能数学加速库FBLAS,通过高维数的矩阵求逆的算法,完全在FPGA内实现了ADBF的算法。

ADBF算法实现的相关性能如下:

方位维天线方向图 俯仰维天线方向图

算法名称 数据格式 性能指标(单拍) 性能指标(连续) 功耗
方位维运算 FP32 455us 245us 30W
俯仰维运算 FP32 335us 148us 30W

5、结论

通过参与了国内众多实际雷达数字信号处理相关产品或是科研的研发和技术合作,加速云累计了大量的经验,在此基础上推出的SC-OPS和SC-VPX产品及高性能数学加速库FBLAS、多重信号分类(MUSIC)、自适应数字波束形成(ADBF)等IP库,可以帮助用户实现系统级的解决方案。通过持续推出高密度高性能硬件平台,高性能RTL级加速IP,配合高性能分布式软件搭建高性能、低延时灵活配置的软件定义平台,推动了雷达和电子对抗设备向更先进设备的演变。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1624

    文章

    21608

    浏览量

    601075
  • Stratix
    +关注

    关注

    1

    文章

    31

    浏览量

    23626
  • 数字信号处理

    关注

    15

    文章

    553

    浏览量

    45756
  • 雷达
    +关注

    关注

    50

    文章

    2861

    浏览量

    117117
收藏 人收藏

    评论

    相关推荐

    LabVIEW无法找到任何目标设备该怎么办?

    嗨,我正在尝试在FPGA LabVIEW的一个新项目中添加digilent的geneys板,但显然LabVIEW无法找到任何目标设备..我不知道这是否可能可能有驱动但我不能
    发表于 10-29 09:19

    何在低端FPGA实现DPA的功能?

    FPGA,动态相位调整(DPA)主要是实现LVDS接口接收时对时钟和数据通道的相位补偿,以达到正确接收的目的。那么该如何在低端FPGA
    发表于 04-08 06:47

    Python和Keras在训练期间如何将高斯噪声添加到输入数据呢?

    模型的鲁棒性。 这在训练数据有限或具有很大可变性时特别有用,因为模型被迫学习对输入的小变化具有鲁棒性的特征。以下是如何在训练期间向图像添加高斯噪声
    发表于 02-16 14:04

    基于 FPGA目标检测网络加速电路设计

    第一部分 设计概述 /Design Introduction目前主流的目标检测算法都是用CNN来提取数据特征,而CNN的计算复杂度比传统算 法高出很多。同时随着CNN不断提高的精度,其网络深度与参数
    发表于 06-20 19:45

    基于噪声环境下的MFCC特征提取

    在语音识别系统,如何在含有噪声的语音信号中提取其良好的特征参数是系统的关键问题之一。本文通过采用自适应滤波来滤除语音信号的高斯白
    发表于 12-12 13:46 24次下载

    基于小波分析的车辆噪声特征提取方法

       特征提取是声目标识别的关键。由于车辆噪声信号的非平稳特性,传统特征提取方法有很大局限性。介绍小波分析方法在车辆噪声
    发表于 12-31 17:16 0次下载

    噪声宽频带放大器电路图

    噪声宽频带放大器电路图
    发表于 04-08 09:23 1107次阅读
    低<b class='flag-5'>噪声</b><b class='flag-5'>宽频</b>带放大器电路图

    Protel在线教程:在PCB如何找到(寻找)元件封装

    Protel在线教程:在PCB如何找到(寻找)元件封装
    发表于 04-22 09:04 3942次阅读
    Protel在线教程:在PCB<b class='flag-5'>中</b>如何<b class='flag-5'>找到</b>(<b class='flag-5'>寻找</b>)元件封装

    基于局部特征匹配的目标跟踪研究

    针对目标跟踪特征提取和匹配问题进行分析,提出了一种基于局部特征匹配的目标跟踪方法,该算法基于Shape Context进行
    发表于 12-06 15:15 32次下载
    基于局部<b class='flag-5'>特征</b>匹配的<b class='flag-5'>目标</b>跟踪研究

    目标跟踪目标匹配的特征融合算法研究

    基于特征融合的目标跟踪目标特征由于某些干扰导致准确度较低。基于贝叶斯框架的特征融合算法进行
    发表于 07-25 15:15 0次下载

    基于OpenCV的室内环境下多目标跟踪

    室内环境下多运动目标跟踪的核心问题是目标的快速识别和准确匹配! 目标的快速识别关键在于目标对象的特征
    发表于 09-23 17:12 0次下载

    宽频鱼雷自导目标回波模拟仿真

    目标模拟器是鱼雷 自导系统设计的重要仪器 。该 文的 目的是给出宽频水下 目标 回波信号模拟的软件仿真流程 ,为 实际 应用 目标模拟器
    发表于 10-25 18:27 26次下载

    基于SIFT特征匹配的运动目标检测及跟踪方法

    检测阶段,首先提取两帧带检测图像的SIFT特征点并进行特征匹配,然后计算两帧图像之间的几何变换矩阵,从而实现图像的几何对齐。再将几何对齐后的两幅图像进行差分,并在差分图像寻找SAD最
    发表于 01-09 16:17 1次下载

    基于FPGA宽频带数字锁相环的设计与实现简介

    基于FPGA宽频带数字锁相环的设计与实现简介说明。
    发表于 06-01 09:41 26次下载

    多尺度卷积特征融合的SSD目标检测

    提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善目标的检测效果。最后,利用SSD模型中原有的多度卷积检测方法,将改进的
    发表于 06-11 16:21 11次下载