0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

第三次人工智能浪潮的回归,人工智能技术推动工业变革

倩倩 来源:lq 作者:亿欧网 2019-09-24 15:32 次阅读

人工智能自诞生起度过了几次跌宕起伏的发展期,也经历了从早期专家系统、机器学习,到当前火热的深度学习等多次技术变革和规模化应用的浪潮。除了消费互联网、金融和安防等领域,人工智能技术也正在向工业领域多个环节广泛渗透,人工智能技术在工业领域的融合应用是后者数字化、网络化、智能化转型发展的关键。、

一、第三次人工智能浪潮的回归

2006年Geoffery Hinton提出了“深度信念网络”(Deep Believe Network)可以被一种名为“贪婪逐层预训练”(greedy layer-wise pre-training)的训练策略进行高效训练快速收敛,这种训练策略大大提升了模型训练效率和输出准确性,从而论证了“深度学习”的可行性。而到了2012年,该学者与其学生在ImageNet挑战赛中通过一种名叫AlexNet的深度神经网络成功将图片识别的错误率降低了10.8个百分点,则彻底打响了深度学习的第一枪,也被行业界认为是第三次人工智能浪潮回归的起点。

阿里云研究中心发布的《中国企业2020:人工智能应用实践与趋势》中提出第三次浪潮的回归相同于第一次、第二次的地方在于技术基础依然是神经元网络,而差别是深度学习的成功。除去“贪婪逐层预训练” (Greedy layer-wise pre-training)的训练策略让深度学习网络的训练更可行之外,这次成功很大程度上依赖于其算法模型规模的指数级升级。模型规模的神经元总数以及神经元连接的数量级使深度学习模型成为更大体量的网络、更高密度的系统,从而能在真实环境中处理更复杂的问题并得出更精准的结论。

这次浪潮取得的最大突破在于对象识别,识别不再局限于图像的识别,还可以识别语音、文字等。此次发展使人工智能技术的应用在不同垂直领域均有了明显的性能提升和效率优化,使计算机视觉语音识别、自然语言处理的准确率有了质的提升,人工智能的应用也逐渐在真实的商业世界中扮演起重要的支持角色。当前新一轮科技革命和产业革命蓬勃兴起,我们正在进入一个由人工智能驱动的新时代。

二、人工智能技术推动工业变革

西门子作为在工业人工智能领域扮演着开创性角色的一家企业,近年来在工业环境中取得了许多基于人工智能的成功。例如将连续运行的算法集成到生产过程中提高预测性分析的准确性,极大地降低了质量检测的成本;采用算法自动分析燃气轮机的运行数据、环境条件和部件特性来延长维护间隔、降低成本;为钢厂提供基于人工智能的质量控制,这种自主学习系统目前已成为一个经典的解决方案。

施耐德电气工业自动化全球战略高级副总裁阿兰·德迪埃称,过去十多年,全球范围内的工业制造水平停滞不前,但现在面临着一次重要机遇,能够利用人工智能提升制造业的产能和效率。联想集团董事长兼CEO杨元庆指出人工智能作为新的技术驱动力正在引发第四次工业革命,尤其是推动垂直行业的智能变革。利用人工智能技术提升和改造传统产业成为社会转型的新动力,从国际发展态势上来看,世界各主要国家均把人工智能作为提升国家竞争力、维护国家安全的重大战略。

工业互联网产业联盟发布的《工业智能白皮书》中指出深度学习和知识图谱是当前工业智能实现的两大技术方向,也是本轮科技革命和产业变革的战略性技术。深度学习在工业应用中基于计算机科学和神经科学,能够“绕过机理直接通过数据形成结果”,解决影响因素较少但计算高度复杂的问题,在解决机理未知或模糊的工业问题方面能产生很好的效果,如产品复杂缺陷质量检测等。

三、人工智能技术在工业领域的落地难点

与其他领域的应用场景不同,工业领域的决策通常处于开放环境下,规则存在不确定性,同时拥有多个目标,这导致人工智能技术虽然应用在消费互联网、金融和安防等领域有较多突破成果,但目前仍未在工业制造领域大规模落地。2018年波士顿在调研评估企业在制造领域采用人工智能的实际进展时发现,将近90%的高管曾计划在3年内将人工智能用于生产,但实际仅有28%有全面详尽的实施路线。虽然人工智能正在加快向各领域渗透,但在工业领域这一极具发展潜力的场景下落地困难重重。

(一)工业领域的数据质量待提升

阿里工业云总经理杨国彦提出数字化的发展有三个阶段:自动化、网络化、智能化,自动化是实现数字化的基础。有了数字化的基础我们才能沉淀大量数据,并通过工业互联的技术,将这些数据很好的采集上来,然后基于海量数据做一些决策与分析,从而实现真正的工业数据智能。第三次人工智能浪潮的主流就是基于大数据量,利用深度学习挖掘数据中存在的有用信息并找到深层逻辑关系。特别是在算法还未完全成熟、仍在持续迭代的阶段,通过提供的大数据以及基于深度学习算法,问题就能够得到很好的解决或性能得到大幅提升。

深度学习技术训练数据的前提是拥有大量的有效数据,然而目前多数企业的信息化水平依然很低,数据的规模和数据的标准化度都还远远不够。

工业领域数据规模的现状如人工智能专家吴恩达所提出的问题:“数据当然是越多越好,我也并没有说许多数据是无用数据。但是在农业、制造、医疗等领域的部分应用场景中,如果你手头只有100张照片,怎么办呢?”数据规模受自身行业特点限制无法扩大或短期内无法改善,如何用小数据集推动深度学习技术能力提升和产业应用发展是一个需要重视和深入探索的课题。

数据标准化程度在工业领域更是一个常见的问题。例如在图片标准化程度方面,由于受到生产条件和成本控制的限制,在工业场景下提取图片数据时往往会出现模糊、明暗不一、目标物缺失的情况,这极大地影响了深度学习训练数据的准确度。收集合适可用的数据成为了工业人工智能无法绕过的一道门槛,如何用有限的硬件资源来尽可能提供可利用的数据也是工业人工智能的一大重心。

(二)技术并非在工业落地的唯一关键

2017年12月,吴恩达宣布创立Landing.AI,目标是帮助制造业公司用算法来降低成本、提升质量管理水平、消除供应链瓶颈等。从公司名字也可以看出,AI 技术要落地,但这个落地并非口头那么简单。到目前为止,Landing.AI提到的工业领域的合作客户依旧只有成立之初的客户富士康一家,同时落地速度也令人不甚满意。

浪潮集团AI&HPC总经理刘军指出“产业AI化”是要深入到每一个行业应用实践当中,需要选择合适的人工智能技术与理解行业应用场景的开发商、软件商、集成商大家一起进行落地实践。对于工业领域,尤其如此,单纯想要通过一个技术去驱动整个产品的发展很难。工业人工智能的落地需要通过设备,仅靠软件算法无法解决,需要结合光学机构、电气等形成系统化驱动工程。例如机器视觉技术真正在工业检测中的应用仅仅依靠视觉算法远远不够,无法真正实现检测功能,视觉企业们需要积累的核心技术除去算法还包含器件和方案能力等。

例如人工智能技术应用在工业生产改善方面是需要采取不同策略持续对生产效率进行改善,这就要求厂商对目标行业的生产情况有十分深刻的理解。同时在生产改善方面企业的个性定制化需求会相对更多,则人工智能算法的通用性也会更弱一些。因此在工业领域,人工智能要真正落地的关键并非仅仅在于人工智能技术的发展或芯片本身,同时也会要求具备在具体应用领域的长期深耕积累,这其中涉及到的内容和要求会变得更加复杂。

(三)工业领域对技术的可靠性需求更高

杭州新松机器人研究院陈立院长表示虽然人工智能技术的实现效果很不错,但对于工业自动化等领域来说,更重要的需求是稳定的技术输出保证,这也是当前AI落地工业领域的瓶颈。

事实上相比于其他领域如消费领域等工业对技术可靠性的要求更高,而且客户需求更加个性化,因此对产品稳定性和调试效率有更高要求。例如人脸识别功能能达到90%的准确率体验就已经很好了,但在一些自动化应用场景中对技术落地应用的准确率要求需要达到99%,甚至99.99%才行。可以想象,对于每日生产量为上万级别以上的工厂,识别准确率若达不到99%以上每天就会有上百个瑕疵产品混入良品之中。

(四)技术在工业领域的投入产出比不确定

人工智能技术的应用前期投入较高然而回报却具有未知性和不确定性,对很多企业来说很可能造成虎头蛇尾的局面。例如预测性维护很早就被提出但在工业领域中一直不温不火,这是因为必须要证明对算法的投入要比定期维护更节约才会说服企业投入。如果部件的寿命与定期维护的时间相差不大,或者这些部件的更换成本并不大,则预测性维护的价值就会打折扣。

对于技术使用方,在工业企业中人工智能技术应用所需的各类高精传感器价格昂贵,运营维护升级等均需要不少费用,而企业能分给人工智能技术发展方面的经费有限;而对于技术提供方,企业的个性化需求较多,每个公司合作研发的执行方法可能完全不同,大部分AI项目需要长期驻厂,AI技术公司所需投入资源也不少。

更重要的是,即便目前互联网产业正跑步进入智能时代,推荐算法、人脸识别等各方面发展迅速且取得显著成果,但多数传统工业却依然在工业3.0的门槛挣扎,机器人、工业控制等一系列自动化过程也并非真正的人工智能技术应用。毫无疑问,工业未来的发展一定需要人工智能,然而人工智能算法在工业领域短期内并不一定马上能够展现出较大的效益。

四、展望

人工智能技术与工业领域的融合发展的确具有广阔前景,但目前的工业智能水平仍旧处于比较初级的阶段,人工智能驱动的自动化尚未能对生产力的增长产生可量化的重大影响。中国工程院院士邬贺铨提出人工智能需要与工业物联网(IIoT)、大数据分析、云计算和信息物理系统集成共同促使工业以灵活、高效和节能的方式运作。

不同行业的发展是相互促进的,人工智能也不可能成为一剂神药。对于工业领域来说,当自动化、网络化、信息化这些方面在工业领域的发展已经成熟,或许才会到达人工智能能够在工业领域大展拳脚的阶段。对于许多中小型企业来说,当在决心转向工业4.0、工业互联网寻求升级转型之前,有必要先了解自己所处阶段,这样才能对症下药,使自身获得最大的效益提升。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46740

    浏览量

    237320
  • 数字化
    +关注

    关注

    8

    文章

    8566

    浏览量

    61606
  • 工业制造
    +关注

    关注

    0

    文章

    402

    浏览量

    28031
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助科学家们更加
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理领域的应用前景将更加广阔。以下
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    人工智能技术在集成电路中的应用

    随着科技的飞速发展,人工智能(AI)与集成电路技术已成为推动现代电子工业进步的重要力量。两者相辅相成,共同推动着电子产品的
    的头像 发表于 07-15 09:43 1989次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    Aidlite-SDK模型推理 https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-python 人工智能 5G AIoT技术实践入门与探索_V2 59分
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    https://t.elecfans.com/v/27186.html *附件:引体向上测试案例_20240126.pdf 人工智能 工业检测:芯片模组外观检测实训part1 11分40秒 https
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    云天励飞推动人工智能产业发展

    企业的技术储备与研发投入、市场竞争,探讨我国人工智能企业实现规模化商业变现、推动产业变革的新机遇与挑战。
    的头像 发表于 01-29 10:54 628次阅读

    人工智能技术的优势有哪些

    人工智能技术的优势
    的头像 发表于 01-19 15:58 3008次阅读