虽然今年以来中国汽车市场销量有下滑趋势,但汽车的电子化进程却并未发生改变,未来汽车中将会有更多电子化的产品,这包括汽车信息娱乐系统、辅助驾驶、车联网、自动驾驶等等。目前,不管是传统汽车制造商,还是造车新势力,都将自动驾驶作为其未来车型的重要发展方向。
而汽车的电子化,离不开半导体厂商的支持,最近半导体公司恩智浦在青岛举办了一场围绕技术的交流与分享活动,会后恩智浦资深副总裁兼首席技术官Lars Reger接受了媒体采访,他透露了恩智浦在汽车领域的布局和对自动驾驶的看法。
图1:恩智浦资深副总裁兼首席技术官Lars Reger(右)与恩智浦大中华区汽车电子首席技术官吕浩(左)。
完全自动驾驶至少还需要五年
在Lars Reger看来,现在谈完全自动驾驶,即L5级自动驾驶,还为时尚早,至少还需要5年以上的时间。虽然一直以来,恩智浦都在从事自动驾驶方面的研究,但目前主要还是在L3和L4级自动驾驶方面,在这两个级别,开始有一些比较成熟的解决方案出来了。特别是L3级自动驾驶,可以说是已经相当成熟了,一些国家也已经对允许多大程度的自动驾驶汽车上路开始了立法工作。未来一两年内L3级别的自动驾驶应该就会普及开来。
但L4及后面的L5级自动驾驶则需要等待更长时间,因为要实现全路况、全天候的自动驾驶,目前难度很大。一是因为城市和乡间的路况非常复杂,二是目前的技术还不能支撑L5级别的自动驾驶,三是目前人们的需要也没有那么迫切。
L3级别的自动驾驶对普通人而言即可适用,但L4、L5级别的自动驾驶更多的是偏向出租车公司这类的商业用途,对普通用户的吸引力其实并不大。
技术方面关键在传感器
讲到L5级自动驾驶系统落地的挑战,Lars Reger认为一个关键难点就是传感器。“过去很多自动驾驶车的路测出现了严重的车祸,原因在于传感的功能不够强,所以在开车的过程中没有注意到行人或者误判了对象。因此,我们需要让传感器做到非常完善的程度,像人的感官一样。”
在他看来,自动驾驶汽车至少要配备三个类型的传感器:第一个类型是人在驾车时,身体感知的一些势能、动能,如转向和压力;第二个类型是驾驶员能看到的视线范围所及的路径,它可以涉及三类,激光雷达、雷达、摄像头,就像人的眼睛能看到的视线一样;第三个类型是人现在不具备的,就是在视线以外车跟车之间的通讯。
他举例说,“一个人驾驶的车即将要到一个十字路口,另外一个方向有一辆救护车即将赶到,路灯可能会立刻变红,驾驶员需要紧急刹车而不能再向前行驶。但有了传感之后,救护车在开近之前就能告诉驾驶员的车,汽车就可以提前做好准备,避免出现紧急刹车的意外情况,这是人眼看不到的传感。”
据Lars Reger介绍,恩智浦在这三个领域都有技术和产品的储备,包括动能、势能,还有微处理单元,服务于摄像头和雷达系统。最近,大众高尔夫8代最新的量产车也是发布了一款片上系统车联网的芯片,能够实现刚才讲到的第三种类别的传感。
在传感器融合方面,恩智浦S32G的姊妹产品,如S32R雷达产品,能实现一些传感器数据的融合。除此之外,“我们也有做传感器数据前端的融合,这些信息通过以太网的光纤输送到BlueBox的平台上,然后在功能安全性和AI加速这两块传感的信息能够进行融合。” Lars Reger表示。
“关于预融合,正如人脑,如果在路上的自动驾驶车的雷达、摄像头都看到了前面有路障,那它肯定就会执行一个紧急制动的操作,之后才会启动策略的思考,研究到底前面的车是拥堵的车还是停在路边的车,并确定是否绕过去。”他进一步指出。
他还指出了业界一个普遍的误解,那就是认为自动驾驶车就是轮子上的智脑,“实际并非这样,在轮子跟智脑之间还有车身,正如人还有躯干一样,躯干会做出一些应激反应,会有保证安全的机制。车身的硬件、基础设施也可以有这样的效果保证安全驾乘,同时能让自动驾驶的成本较低。”
除了自己的传感器,恩智浦也投资了一些传感器厂商,比如,今年上半年,恩智浦与南京隼眼电子科技有限公司(简称“隼眼”)签署了战略合作伙伴与投资协议。隼眼是依托东南大学毫米波国家重点实验室成立的一家创业公司,在77GHz雷达领域拥有深厚的专业知识和高素质的工程人才。恩智浦认为,77GHz汽车雷达传感器将对ADAS下一阶段的发展起到关键作用,发展为成像雷达后,可结合摄像头与V2X技术,取代激光雷达。
另外,在芯片方面,Lars Reger也觉得目前的AI芯片性能和功耗都还不能满足自动驾驶的需求,未来3nm的AI芯片出现时,可能才能实现L5级自动驾驶。
技术之外,还与环境密切相关
除了上面提到的一些技术难点,还与社会环境密切相关,Lars Reger举例说,他们在自动驾驶路测时在很多地方都碰到了一个情况,那就是总有些年轻人看到自动驾驶车过来后,会故意挡在汽车的前面,反复几次汽车就被困在了路中间。因此,如果目前要做到车里面完全没有驾驶员,那么就没有办法把这些路测完全顺利地开展下去。
他认为在中国会有不同的结果,因为中国的城市有非常严格的社会监控体系,相比欧洲各地的监控都要更加普及,对于上述有类似行为的人,可能会有相应的处罚。因此,Lars Reger认为,一方面自动驾驶的机器人要学好这些培训的内容,另一方面路测需要时间,也需要一个良好的社会监管环境。因此,他认为中国可能会更快实现完全自动驾驶。
恩智浦的努力
在自动驾驶方面,恩智浦其实一直都有投入,比如他们的开发平台Bluebox,其中包含了一系列芯片产品,包括S32处理器,还有一些比较高性能的AI加速器。
“我们在2015年跟飞思卡尔合并之后就着手进行自动驾驶领域的投入,我们计划收购Marvell的蓝牙和WiFi的业务,还自主研发了包括UWB在内的多种技术,这些都是发力自动驾驶而进行的技术储备。因此恩智浦在业界成为唯一一家能够为汽车行业实现电动化、互联以及安全自动驾驶提供相应半导体技术和系统级解决方案支持的企业,而且我们能实现90%以上芯片的自研发和自生产。” Lars Reger表示。
恩智浦正在把其他行业的一些创新思路复制到汽车行业,同时也把汽车行业的用例推广到其他市场。Lars Reger举例说,“比如UWB芯片,我们现在将其引入到汽车电子中以实现对汽车行业应用的创新,现在我们也已经看到UWB的芯片应用在手机端就可以实现更强大的连结功能,包括与汽车、手机以及与钥匙、密钥等系统的融合。“
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
传感器
+关注
关注
2552文章
51233浏览量
754729 -
恩智浦
+关注
关注
14文章
5869浏览量
107744 -
人工智能
+关注
关注
1792文章
47437浏览量
238984 -
自动驾驶
+关注
关注
784文章
13874浏览量
166609 -
传感融合
+关注
关注
0文章
2浏览量
6202
发布评论请先 登录
相关推荐
一文聊聊自动驾驶测试技术的挑战与创新
,包括场景生成的多样性与准确性、多传感器数据融合的精度验证、高效的时间同步机制,以及仿真平台与实际场景的匹配等问题。 自动驾驶测试的必要性与现状 1.1 自动驾驶技术的复杂性推动测试变革 自动
MEMS技术在自动驾驶汽车中的应用
MEMS技术在自动驾驶汽车中的应用主要体现在传感器方面,这些传感器为自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术在
通用汽车旗下Cruise据悉计划年内恢复完全自动驾驶服务
通用汽车旗下的无人驾驶部门Cruise正加速推进其业务恢复计划,据知情人士透露,该部门目标在今年晚些时候恢复运行完全自动驾驶的乘车服务,并计划在2025年初正式对此服务进行收费。这一消息为自动
FPGA在自动驾驶领域有哪些优势?
通过标准接口与其他硬件组件进行集成,如传感器、处理器和通信模块等。这种易于集成的特性使得FPGA能够方便地融入自动驾驶系统的整体架构中。同时,FPGA还支持模块化设计,可以根据需要扩展
发表于 07-29 17:11
FPGA在自动驾驶领域有哪些应用?
低,适合用于实现高效的图像算法,如车道线检测、交通标志识别等。
雷达和LiDAR处理:自动驾驶汽车通常会使用雷达和LiDAR(激光雷达)等多种传感器来获取环境信息。FPGA能够协助完成这些传感器
发表于 07-29 17:09
自动驾驶的传感器技术介绍
自动驾驶的传感器技术是自动驾驶系统的核心组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。以下是对自动驾驶传感器技术的详细介绍,内
自动驾驶汽车传感器有哪些
自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对
2030年,自动驾驶传感器市场将高达235亿美元
来源:半导体行业观察 编辑:感知芯视界 Link ADAS(高级驾驶辅助系统)/自动驾驶传感器的全球市场预计到 2030 年将达到约 3.7 万亿日元(约合235亿美元)。车载
XV7181BB 陀螺仪传感器在自动驾驶设备中的应用
自动驾驶技术正在迅速发展,改变着交通运输的未来。为了实现安全、稳定和高效的自动驾驶,车辆需要依赖先进的传感器技术来获取实时的姿态和运动数据。EPSON的XV7181BB陀螺仪
揭秘自动驾驶:未来汽车的感官革命,究竟需要哪些超级传感器?
来源:LANCI澜社汽车,谢谢 编辑:感知芯视界 Link 随着自动驾驶技术的发展,我们已进入一个技术瓶颈期。在这一背景下,汽车制造商开始将注意力转向自动驾驶的关键组成部分——传感器。
特斯拉Cybertruck将获完全自动驾驶功能
特斯拉首席执行官埃隆·马斯克近日宣布,备受期待的电动皮卡Cybertruck将很快获得完全自动驾驶(FSD)功能。这款车型自上市以来已有半年多时间,但FSD功能一直未能上线。
用于自动驾驶,无人驾驶领域的IMU六轴陀螺仪传感器:M-G370
用于自动驾驶,无人驾驶的IMU惯导模块六轴陀螺仪传感器:M-G370。自2020年,自动驾驶,无人驾驶
发表于 04-02 11:44
•0次下载
CMOS图像传感器为自动驾驶汽车提供视觉感知
来源:安森美,谢谢 编辑:感知芯视界 Link 要实现全自动驾驶汽车,需要整合来自多种传感器的信息,其中摄像头的信息可能是最重要的。这些摄像头必须能够在各种条件下连续捕捉最微小的细节,以确保车辆乘客
评论