0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【硬见小百科】高速PCB设计中的阻抗匹配

云创硬见 2019-12-13 13:47 次阅读

阻抗匹配
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。
PCB走线什么时候需要做阻抗匹配?
不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。导线延时一般取值为150ps/inch。
特征阻抗
信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。特征阻抗可以使用软件计算。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。
常见阻抗匹配的方式
1、串联终端匹配
在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。
匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。
串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。
常见应用:一般的CMOS、TTL电路的阻抗匹配。USB信号也采样这种方法做阻抗匹配。
2、并联终端匹配
在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。
匹配电阻选择原则:在芯片的输入阻抗很高的情况下,对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等;对双电阻形式来说,每个并联电阻值为传输线特征阻抗的两倍。
并联终端匹配优点是简单易行,显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关;双电阻方式则无论信号是高电平还是低电平都有直流功耗,但电流比单电阻方式少一半。
常见应用:以高速信号应用较多。
(1)DDR、DDR2等SSTL驱动器。采用单电阻形式,并联到VTT(一般为IOVDD的一半)。其中DDR2数据信号的并联匹配电阻是内置在芯片中的。
(2)TMDS等高速串行数据接口。采用单电阻形式,在接收设备端并联到IOVDD,单端阻抗为50欧姆(差分对间为100欧姆)。

关于云创硬见

云创硬见是国内最具特色的电子工程师社区,融合了行业资讯、社群互动、培训学习、活动交流、设计与制造分包等服务,以开放式硬件创新技术交流和培训服务为核心,连接了超过30万工程师和产业链上下游企业,聚焦电子行业的科技创新,聚合最值得关注的产业链资源, 致力于为百万工程师和创新创业型企业打造一站式公共设计与制造服务平台。

【造物工场】

赋能中小团队,一站式硬件综合服务平台。PCB、PCBA、BOM、元器件、开发板在线下单等硬件产品方案。多名资深产品、项目经理提供专业技术支持,一站式服务产品方案到设计、生产等全链路服务。

服务领域:电子行业

服务对象:个体工程师、小型研发团队、小型硬件创业团队。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 阻抗匹配
    +关注

    关注

    14

    文章

    354

    浏览量

    30884
收藏 人收藏

    评论

    相关推荐

    百科启动“繁星计划”

    近日,百科携手中国科协、中国科学院大学共同举办了史记2024·科学百科100词发布会,并在此盛会上正式启动了“繁星计划”。这一计划的核心目标在于利用前沿的AI技术,包括数字人、智能体等,以及
    的头像 发表于 12-31 10:26 195次阅读

    深度解析:PCB高速信号传输阻抗匹配与信号完整性

    一站式PCBA智造厂家今天为大家PCB设计什么是高速信号?PCB设计为什么高频会出现信号失真。在电子设备制造
    的头像 发表于 12-30 09:41 196次阅读

    Cadence技术解读 天线的阻抗匹配技术

    本文要点 天线的阻抗匹配技术旨在确保将最大功率传输到天线,从而使天线元件能够强烈辐射。 天线阻抗匹配是指将天线馈线末端的输入阻抗与馈线的特性阻抗
    的头像 发表于 12-16 15:44 929次阅读
    Cadence技术解读 天线的<b class='flag-5'>阻抗匹配</b>技术

    100M到200M的ADC在PCB设计时,要进行严格的阻抗匹配吗?

    100M到200M的ADC在PCB设计时,要进行严格的阻抗匹配
    发表于 12-06 06:50

    半导体术语小百科

    面对半导体行业的高速发展,掌握核心术语不仅是行业人的基本功,更是沟通无碍的关键。无论你是刚入行的新手,还是经验丰富的达人,这份“半导体术语小百科”将带你走进从硅到微芯片、从前端到后端的每一环节。
    的头像 发表于 11-20 11:39 507次阅读

    阻抗匹配计算和差分走线设置

    ad,cadense 阻抗匹配计算和差分走线设置
    发表于 10-17 16:59 2次下载

    高速PCB布线中信号阻抗匹配的原因

    在电子信号的精密传输领域,阻抗匹配扮演着至关重要的角色。当信号在传输过程遭遇阻抗匹配时,就如同水流在管道遇到了障碍,不可避免地会产生反
    的头像 发表于 09-25 16:13 585次阅读

    阻抗匹配50欧姆好像是一个很特殊的值,为什么呢?

    阻抗匹配50欧姆好像是一个很特殊的值,为什么呢?各种的阻抗匹配情况是怎样考虑的?因为最近的一个问题对阻抗匹配的原理开始模糊起来,请专家指教。
    发表于 09-19 07:26

    为什么要阻抗匹配

    电子行业的工程师经常会遇到阻抗匹配问题。什么是阻抗匹配?为什么要进行阻抗匹配?本文带您一探究竟!什么是阻抗在电学,常把对电路
    的头像 发表于 07-10 08:25 1403次阅读
    为什么要<b class='flag-5'>阻抗匹配</b>?

    PCB阻抗匹配过孔的多个因素你知道哪些?

    高速PCB设计阻抗匹配是至关重要的。过孔作为连接不同层信号的关键元素,也需要进行阻抗匹配以确保信号的完整性。捷多邦小编今天就与大家聊聊
    的头像 发表于 07-04 17:39 1567次阅读

    电路的阻抗如何匹配

    。这在射频电路和高速数字电路设计中非常关键。以下是实现阻抗匹配的一些基本方法:1.传输线匹配:保证传输线的特性阻抗与源和负载阻抗
    的头像 发表于 06-28 08:29 2534次阅读
    电路的<b class='flag-5'>阻抗</b>如何<b class='flag-5'>匹配</b>

    阻抗匹配有烦恼?来唠一唠~

    一、 阻抗匹配电路的作用 二、 阻抗匹配的理想模型 三、 电感电容的高频特性 四、 Smith圆图在RF匹配电路调试的应用 五、 RF匹配
    的头像 发表于 06-11 14:15 638次阅读
    <b class='flag-5'>阻抗匹配</b>有烦恼?来唠一唠~

    什么是阻抗?为什么要做阻抗匹配

    和容抗正好相等,整体上呈现纯电阻。如果感抗大于容抗,整体上则呈现感性,反之呈现容性。 2、为什么要做阻抗匹配 根据我们要达到的不同目的,阻抗匹配也可以有不同的理解。比如说一个直流或低频信号源,通过导线
    发表于 06-04 06:46

    高速差分信号阻抗匹配详解

    高速数据传输系统,差分信号作为一种常见的信号传输方式,具有抗噪声能力强、传输距离远等优点。然而,差分信号的传输质量受到诸多因素的影响,其中阻抗匹配是确保信号稳定传输的关键因素之一。本文将详细探讨
    的头像 发表于 05-16 16:32 2767次阅读

    阻抗匹配的原理分析?

    由电路结构的不同,阻抗匹配有如下五种形式,首端串联,末端并联下拉,末端并联上拉,末端戴维南(既有上拉又有下拉),阻容串联下拉。有几个问题请教。 1、阻抗匹配只是针对传输线过程吗,对输出端口和输入
    发表于 05-09 23:05