0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

说说PING命令涉及端到端的理论

汽车玩家 来源:网络技术达人王山石 作者:网络技术达人王山 2020-01-01 17:26 次阅读

还是我之前的观点,越基础的东西有时越难于解释。今天我们说说网工常用的PING.

任何靠 IT 行业讨饭吃的人,无论在哪个范畴工作,都一定懂得 Ping 这个指令。差不多任何作业系统都具备 Ping 这命令,用来做简单的 Troubleshooting。但究竟 Ping 在背后帮我们做了些什麽呢?本篇文章就从 Ping 说起,并会涉及关于端到端的理论。

众所周知,Ping 的作用是发讯息给一个设备,要求对方回应,从而知道对方的状态,是生是死?也可以凭它回应的速度和成功率来判断网络状态。为啥叫 Ping 呢?我翻查过一些资料,原来和另一门科学有着莫大关系 - 声纳探测!所谓声纳探测就是潜艇在水底发出声波,声波遇到障碍物时反弹给潜艇,于是潜艇就可以知道障碍物的位置了,而这个方法就是叫 Ping。声纳探测的 Ping 操作上与网络的 Ping 很类似,所以当初程式人员把这工具命名为 Ping 实在很有心思!

Ping 是一个程序,这程序所发出的包就叫做 ICMP Packet。ICMP 结构简单,被包在 IP Packet 里面,每个 ICMP 都包含一些简单的讯息。

说说PING命令涉及端到端的理论

任何设备收到 Echo Request 通常都会回应 (Echo Reply),除非故意做了设定不回应 (例如:Firewall 设定) 或者 ICMP Traffic 被 Access-List 之类挡下来。当发送方收到对方回应後就可以计算出一些结果。

说说PING命令涉及端到端的理论

RTT

Ping 通常会做多次 Echo Request,并记录每一个 Echo Request 与 Echo Reply 之间的时间差,这个时间差称为 Round Trip Time (RTT),也可称 End-to-end Delay。每一个 Ping 的 RTT 都不同,所以在 Ping 的 Result 中会看到最大(max)丶最小(min)和平均(avg) RTT 等数据。

丢包率 (Packet Loss %)

Ping 不一定每次都成功,刚才说过,失败的原因可能是 Destination Unreachable 或者 Time Exceeded。也可能是 Timeout,即过了一定时间也收不到对方回应。Packet Loss % 就是收不到回应的机率,极具参考价值,是反映网络是否稳定的重要指标。

TTL

Ping 送出 Packet 时会设定一个 TTL (Time to Live) 的数值,预设 TTL 值各作业系统有所不同。Packet 每次被 Route,Packet 里面的 TTL 值都会被减 1。当 Packet 到达目的地时只要看看 Packet 的 TTL 就知道 Packet 经历过多少个 Hop 才到达。如不幸 TTL 在传送中途被扣减至 0 仍未到达目的地,则会被丢弃。而丢弃 Packet 的 Router 会回应 Time Exceeded,这样发 ICMP 的一方就知道原因是 TTL 被减至 0 了。

端到端的延时

说说PING命令涉及端到端的理论

试想想,当你发 ICMP 给一台设备,该设备可能在世界的另一端,Packet 到达目的地需要一点时间,而这段时间名为 End-to-end Delay。在网络的角度来看,构成 End-to-end Delay 的因素主要有以下 4 个:

Processing Delay

当一个 Packet 到达 Router 时,Router 需要进行运算去找出 Packet 应该被送到那里,称为Routing Decision。而这运算的时间就是 Processing Delay。Processing Delay 的长短取决于Router 的作业系统丶运算速度甚至硬体结构等。

Queuing Delay

透过Routing Decision,Router 决定了 Packet 的出口,就会把 Packet 移送到该 Interface,这时 Packet 会在 Interface 的 Output Queue 排队,等待被处理,等待的时间就是 Queuing Delay 了。Queuing Delay 的长短则要看当时网络的状况,简单来说就是前面有多少 Packet 在排队。而且 Output queue 是有相应机制的,即是说如果发现 queue buffer 即将爆满,有些 Packet 会被丢弃,不一定是队尾的 Packet 被丢弃,可以在整条 Queue 里面抽一些 Packet 弃掉来腾出空间,这就是 Packet Drop。不过,这涉及 QoS 的设定,本文暂时不展开。

Transmission Delay

有幸生存下来的 Packet 就会慢慢移至 Output Queue 的最前头,Interface 会把 Packet 一个一个的送上传送媒介 (就是网络线啦)。但 Interface 不能疯狂地把 Packet 送走,它只能按预先设定好的速度来送出。

因此,如果要在 100Mbps Bandwidth 的 Interface 送出一个 1500 Bits 的 Packet,其 Transmission Delay 就是: 1500 bits / 100 Mbps = 15 ns

Propagation Delay

Packet 终于上路了,变成电子讯息或光讯息在传送媒介上高速行走。有多高速?如果用 Copper Cable 的话,电子讯息在铜线上传送速度约为每秒 2 x 10的8次方 公尺,如果使用光纤线,光的速度为每秒 3 x 10的8次方 公尺。假设用光纤线传送 10 公里,Propagation Delay 为: 10 km / 3 x 10的8次方 ms = 33.36 ns

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光纤
    +关注

    关注

    19

    文章

    3905

    浏览量

    73114
  • ICMP
    +关注

    关注

    0

    文章

    52

    浏览量

    14923
  • Ping
    +关注

    关注

    0

    文章

    69

    浏览量

    15971
收藏 人收藏

    评论

    相关推荐

    黑芝麻智能算法参考模型公布

    黑芝麻智能计划推出支持华山及武当系列芯片的算法参考方案。该方案采用One Model架构,并在决策规划单元引入了VLM视觉语言大模型和PRR行车规则的概率化表征子模块,进一步提升了智驾系统的决策规划能力。
    的头像 发表于 12-03 12:30 261次阅读
    黑芝麻智能<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>算法参考模型公布

    爆火的如何加速智驾落地?

    编者语:「智驾最前沿」微信公众号后台回复:C-0551,获取本文参考报告:《智能汽车技术研究报告》pdf下载方式。 “
    的头像 发表于 11-26 13:17 224次阅读
    爆火的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>如何加速智驾落地?

    连接视觉语言大模型与自动驾驶

    自动驾驶在大规模驾驶数据上训练,展现出很强的决策规划能力,但是面对复杂罕见的驾驶场景,依然存在局限性,这是因为
    的头像 发表于 11-07 15:15 206次阅读
    连接视觉语言大模型与<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>自动驾驶

    智己汽车“”智驾方案推出,老司机真的会被取代吗?

    随着智能驾驶技术的发展,行业已经从早期基于简单规则和模块化逻辑的自动驾驶,逐步迈向依托深度学习的高复杂度智能驾驶解决方案,各车企也紧跟潮流,先后宣布了自己的智驾方案。就在近期,智己汽车推出了其
    的头像 发表于 10-30 09:47 248次阅读
    智己汽车“<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>”智驾方案推出,老司机真的会被取代吗?

    让智驾强者愈强时代来临?

    编者语: 「智驾最前沿」微信公众号后台回复: C-0572 ,获取本文参考报告:《信达证券:革命开启,强者愈强时时代即将来临》pdf下载方式。 随着科技进步和汽车技术的发展,智能驾驶时代已然
    的头像 发表于 10-24 09:25 489次阅读
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>让智驾强者愈强时代来临?

    InfiniBand网络解决LLM训练瓶颈

    的,这需要大量的计算资源和高速数据传输网络。InfiniBand(IB)网络作为高性能计算和AI模型训练的理想选择,发挥着重要作用。在本文中,我们将深入探讨大型语言模型(LLM)训练的概念,并探索
    的头像 发表于 10-23 11:26 362次阅读
    <b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>InfiniBand网络解决LLM训练瓶颈

    Mobileye自动驾驶解决方案的深度解析

    自动驾驶技术正处于快速发展之中,各大科技公司和汽车制造商均在争相布局,试图在这个新兴领域占据一席之地。Mobileye作为全球自动驾驶技术的领军企业之一,凭借其独特的自动驾驶解决方案,展现了
    的头像 发表于 10-17 09:35 338次阅读
    Mobileye<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>自动驾驶解决方案的深度解析

    测试用例怎么写

    测试方法,旨在验证整个应用程序从前端后端的流程是否能够按照预期工作。它涉及多个系统组件和接口的交互,确保业务流程的完整性和正确性。 二、编写
    的头像 发表于 09-20 10:29 428次阅读

    恩智浦完整的Matter解决方案

    恩智浦为打造Matter设备,提供了完整的解决方案,从连接和安全解决方案到处理器和软件,应有尽有,为Matter标准的规模化商用提供有力支撑。
    的头像 发表于 08-26 18:04 2549次阅读
    恩智浦完整的Matter<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>解决方案

    实现自动驾驶,唯有

    ,去年行业主流方案还是轻高精地图城区智驾,今年大家的目标都瞄到了(End-to-End, E2E)。
    的头像 发表于 08-12 09:14 698次阅读
    实现自动驾驶,唯有<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>?

    周光:不是真“无图”,谈何

    “如果智能驾驶系统不能彻底摆脱高精度地图,谈何。”   6月1日,元戎启行CEO周光在粤港澳大湾区车展暨2024(第二届)未来汽车先行者大会上表示。   这并非周光第一次强调“无图”方案与
    发表于 06-03 11:06 3066次阅读
    周光:不是真“无图”,谈何<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>

    小鹏汽车发布大模型

    小鹏汽车近日宣布,其成功研发并发布了“国内首个量产上车”的大模型,该模型可直接通过传感器输入内容来控制车辆,标志着智能驾驶技术的新突破。
    的头像 发表于 05-21 15:09 671次阅读

    stm32 +lwip1.3.1客户异常导致网络ping不通怎么解决?

    stm32上运行lwip作为服务器,如果客户异常了,发现在客户再也ping不通 网络如果异常,交换机挂了,重启后,客户怎么都ping
    发表于 04-22 07:30

    佐思汽研发布《2024年自动驾驶研究报告》

    自动驾驶是直接从传感器信息输入(如摄像头图像、LiDAR等)控制命令输出(如转向、加减速等)映射的一套系统,最早出现在1988年的A
    的头像 发表于 04-20 11:21 3044次阅读
    佐思汽研发布《2024年<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>自动驾驶研究报告》

    理想汽车自动驾驶模型实现

    理想汽车在感知、跟踪、预测、决策和规划等方面都进行了模型化,最终实现了的模型。这种模型不仅完全模型化,还能够虚拟化,即在模拟环境中进行训练和测试。
    发表于 04-12 12:17 443次阅读
    理想汽车自动驾驶<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>模型实现