0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI芯片逐渐进入洗牌期 功耗比仍是终端侧重点

半导体动态 来源:中国电子报 作者::张心怡/马利亚 2020-01-07 15:28 次阅读

芯片AI,芯片是支撑人工智能的基础。2019年,云端AI芯片迎来亚马逊高通、阿里巴巴、Facebook等新玩家,软硬一体化趋势加强;终端芯片功耗比竞争加强,语音芯片持续火热;边缘AI芯片势头初现。2020年,AI芯片将逐渐进入洗牌期,机遇与挑战并存。

边缘AI芯片进入抢滩战

AI正在从云端向边缘端扩展,边缘计算被视为人工智能的下一个战场。寒武纪副总裁刘道福表示,在边缘计算种类中,边缘往往和各类传感器相连,而传感器的数据往往是非结构化的,很难直接用于控制和决策,因此需要边缘人工智能计算将非结构化的数据结构化,从而用于控制和决策。

2019年,围绕边缘AI芯片的抢滩布局已经开始。一方面,英伟达、寒武纪、百度等已经在云、端有所积累的厂商,希望以边缘芯片完善云、边、端生态,打造一体化的计算格局。英伟达发布了面向嵌入式物联网的边缘计算设备Jetson Nano,适用于入门级网络硬盘录像机、家用机器人以及具备全面分析功能的智能网关等应用,之后又发布了边缘AI超级计算机Jetson Xavier NX,能够在功耗10W的模式下提供最高14TOPS,在功耗15W模式下提供最高21 TOPS的性能。寒武纪发布用于深度学习的SoC边缘加速芯片思元220,采用台积电16nm工艺,最大算力32TOPS(INT4),功耗控制在10W,支持Tensorflow、Caffe、mxnet以及pytorch等主流编程框架。百度联合三大运营商、中兴、爱立信、英特尔等,发起百度 AI 边缘计算行动计划,旨在利用 AI 推理、函数计算、大数据处理和产业模型训练推动 AI 场景在边缘计算的算力支撑和平台支持。

另一方面,自动驾驶等专用边缘AI芯片势头渐显。地平线宣布量产国内首款车规级AI芯片“征程二代”,采用台积电28nm工艺,可提供超过4TOPS的等效算力,典型功耗仅2瓦,延迟少于100毫秒,多任务模式下可以同时运行超过60个分类任务,每秒钟识别目标数超过2000个,面向车联网对强实时响应的需求。

多个新玩家入局云端

云端仍然是AI芯片的主要战场。2019年,云端芯片迎来多个新玩家,算力大战持续升级。高通推出了面向数据中心推理计算的云端AI芯片Cloud AI 100,峰值性能超过350 TOPS,与其他商用方案相比每瓦特性能提升10倍。云服务领跑者亚马逊推出了机器学习推理芯片AWS Inferentia,最高算力为128 TOPS,在AI推理实例inf1可搭载16个Inferentia芯片,提供最高2000TOPS算力。阿里巴巴推出号称全球最高性能AI推理芯片含光800,采用自研芯片架构和达摩院算法,在Resnet50基准测试中获得单芯片性能第一。腾讯投资的燧原科技发布了面向云端数据中心的AI加速卡云燧 T10,单卡单精度算力达到20TFLOPS,支持单精度FP32和半精度BF16的混合精度计算,并为大中小型数据中心提供了单节点、单机柜、集群三种模式,在集群模式下通过片间互联实现1024节点集群。

芯片是AI的载体,而软件是完成智能操作的核心。随着异构计算逐渐导入AI芯片,软硬件协同成为云端AI的重要趋势。英特尔推出了面向异构计算的统一软件平台One API,以隐藏硬件复杂性,根据系统和硬件自动适配功耗最低、性能最佳的加速方式,简化并优化编程过程。赛灵思也推出了软件平台Vitis AI,向用户开放易于访问的软件接口,可根据软件或算法自动适配赛灵思硬件架构。

功耗比仍是终端侧重点

在终端侧,功耗比仍然是角逐焦点。尤其在手机等对于续航能力锱铢必较的终端,主力厂商推出的AI引擎都对低功耗有所强调。麒麟990 5G的NPU采用双大核+微核的方式,大核负责性能,微核拥有超低功耗。据介绍,微核在人脸检测的应用场景下,能耗比大核工作降低24倍。高通发布的骁龙865集成了传感器中枢,让终端能够以极低功耗感知周围情境。三星提出通过较低功耗的NPU实现终端设备上的AI处理,实现在设备端直接执行更复杂的任务。

除了手机,终端侧的另一个当红炸子鸡是AI语音芯片。科大讯飞、阿里巴巴、探境科技、清微智能等都发布了针对智能家居的AI语音芯片,反映了AI芯片在特定领域的专业化、定制化趋势。阿里达摩院公布了首款专用于语音合成算法的 AI FPGA芯片技术Ouroboros,使用了端上定制硬件加速技术,降低对云端网络的依赖,支持实时语音合成和AI语音识别,有望在天猫精灵搭载。

2020机遇挑战并存

2019-2021年,中国AI芯片市场规模仍将保持50%以上的增长速度,到2021年,市场规模将达到305.7亿元。赛迪智库预测,2019-2021年,云端训练芯片增速放缓,云端推理芯片、终端推理芯片市场增长速度将持续呈上升趋势。预计2021年,中国云端训练芯片市场规模将达到139.3亿元,云端推理芯片市场规模将达到82.2亿元,终端推理芯片达到84.1亿元。

集邦咨询分析师姚嘉洋向记者指出,2019年,AI芯片大致已经走出一条较为清晰的道路,端、边、云的芯片规格相对明确。2020年,各大芯片厂会延续在2019年的产品发展路径,持续深化芯片的性价比及功耗比表现。从训练端来看,值得关注的是HBM(高频宽存储器)的整合与相关的封装技术良率,这会牵动芯片厂商与存储器及封测厂商之间合作关系的变化。推理端的决战点在INT8领域,重点在于如何进一步提升芯片本身的性能及功耗表现。

5G、VR/AR等新技术,也将为AI芯片,尤其是边缘侧的AI芯片提供更多的发挥空间。Arm ML事业群商业与营销副总裁Dennis Laudick曾向记者表示,5G通信技术改变了数据处理的方式,让边缘AI的工作负载也有了处理需求。可以说,5G带来了网络边缘的更多创新。姚嘉洋也表示,AI在5G核心网络存在机会,由于5G带来了更多元的频谱组合,AI可以辅助核心网络更有效地调度网络资源,将频宽资源的利用达到极大化。同时,5G也涵盖车联网,AI将在自动驾驶将大有机会。在VR/AR端,AI也在导入,主要聚焦在人眼追踪或是场景识别等应用,有望改善VR/AR的流畅度与实时性表现。

清华大学微电子所所长魏少军表示,从产业发展规律来看,在2019-2020年,AI芯片将持续火热,企业扎堆进入;但是到了2020年前后,则将会出现一批出局者,行业洗牌开始。由于目前AI算法还在不断演进汇总的过程中,最终的成功与否则将取决于各家技术路径的选择和产品落地的速度。

痛点尚待攻克

近两年,AI在语音识别、图像识别等应用领域取得突破,但要从单点突破走向全面开花,需要AI领域诞生如同CPU一样的通用AI计算芯片。清华大学微纳电子系副教授尹首一等专家指出,AI芯片短期内以异构计算为主,中期要发展自重构、自学习、自适应,长期则朝向通用计算芯片发展。

具体来说,AI要从应用适应硬件走向硬件适应应用,就要求AI芯片具备可编程性、动态可变的计算架构,来应对层出不穷的新算法和新应用。魏少军表示,AI芯片一要适应算法的演进,二要有适应所有应用的架构,这就要求架构具备高效的转化能力。在成本敏感的消费电子领域,还需关注AI芯片的计算效能,达到低功耗、小体积、开发简易,这些都需要探索架构上的创新。

全球AI芯片产业仍处于产业化早期阶段,国产处理器厂商与国际厂商在人工智能这一全新赛场上处在同一起跑线。耐能创始人兼CEO 刘峻诚表示,中国拥有庞大的智能手机、智能家居、智能安防等市场,对中国的AI公司而言,不仅在服务国内客户时具有本土化的优势,还可借助这些客户的生产制造优势进军海外市场,实现“立足中国,放眼全球”的商业布局。
责任编辑:wv

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1789

    文章

    46545

    浏览量

    236820
  • AI芯片
    +关注

    关注

    17

    文章

    1849

    浏览量

    34819
收藏 人收藏

    评论

    相关推荐

    AI终端时代:端侧算力快速提升,AI芯片竞争进入新的阶段

    全球终端市场在经历了高峰之后,在2022年、2023年出现明显的终端市场下滑。进入2024年,全球终端市场又迎来了小幅反弹,AI技术的加持是
    的头像 发表于 04-22 07:49 3547次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>终端</b>时代:端侧算力快速提升,<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>竞争<b class='flag-5'>进入</b>新的阶段

    RISC-V,即将进入应用的爆发

    我们会迎来前所未见的AI软件应用,而RISC-V有望打造出下一代的AI引擎。” 达摩院院长张建锋此前在3月2024玄铁RISC-V生态大会表示,随着新型算力需求激增,RISC-V发展迎来蝶变,即将进入应用爆发
    发表于 10-31 16:06

    Orin芯片功耗分析

    随着自动驾驶技术的飞速发展,对计算平台的性能和功耗要求也越来越高。NVIDIA的Orin芯片作为自动驾驶领域的重要参与者,其功耗表现对于整个系统的能效至关重要。 一、Orin
    的头像 发表于 10-27 15:45 288次阅读

    OPA2186和TLV2186参数区别是什么?

    TLV2186, OPA2186对比了一下TLV2186和您推荐的OPA2186, 这颗OPA2186除了稍微贵一点点,其他主要参数都优于TLV2186,这两颗料有没有在参数上主要区别或者应用方向的侧重点
    发表于 07-29 07:55

    AI终端应用元年到来,史密斯英特康突破AI芯片测试挑战

    工智能技术——V2A技术(”视频到音频”的缩写)。这项技术被视为人工智能在媒体创作领域的重要进展,旨在解决现有AI模型无法同时生成音效的问题。 多家机构给出的数据均指出,今年会是AI终端发展的元年。2024年,全球16%的智能手
    的头像 发表于 06-21 11:10 316次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>终端</b>应用元年到来,史密斯英特康突破<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>测试挑战

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    risc-v多核芯片AI方面的应用

    RISC-V多核芯片AI方面的应用主要体现在其低功耗、低成本、灵活可扩展以及能够更好地适应AI算法的不同需求等特点上。 首先,RISC-V适合用于高效设计实现,其内核面积更小,
    发表于 04-28 09:20

    台积电AI芯片市场份额大增,占九成以上

    自从Open AI推动了生成式AI技术后,英伟达的AI加速器芯片的需求逐渐升高。同时,这项技术也吸引了包括谷歌、英特尔、微软、AMD及Fac
    的头像 发表于 03-27 09:59 594次阅读

    fpga验证和测试的区别

    FPGA验证和测试在芯片设计和开发过程中都扮演着重要的角色,但它们各自有着不同的侧重点和应用场景。
    的头像 发表于 03-15 15:03 994次阅读

    苹果13英寸和15英寸MacBook Air新品将搭载M3芯片,性能大幅提升

     据悉,新款MacBook Air将推出13英寸和15英寸两款,此型号外形无变动,性能提升将成为侧重点。苹果新款MacBook Air已进入生产阶段。
    的头像 发表于 02-27 14:31 744次阅读

    英伟达将用AI设计AI芯片

    AI芯片行业资讯
    深圳市浮思特科技有限公司
    发布于 :2024年02月19日 17:54:43

    2024年中国AI终端将达55%

    AI终端是指在终端设备中集成处理器的AI引擎。IDC认为,随着终端算力的提升和AI加速引擎
    的头像 发表于 12-08 17:27 1150次阅读

    芯片终端需求12月份调查报告

    芯片终端
    芯广场
    发布于 :2023年12月04日 19:10:54

    #芯片 #AI 世界最强AI芯片H200性能大揭秘!

    芯片AI
    深圳市浮思特科技有限公司
    发布于 :2023年11月15日 15:54:37

    骁龙证明自己成为面向生成式AI的首选平台

    通CEO安蒙在骁龙峰会上的主题演讲内容、措辞和介绍的旗舰芯片技术特性侧重点,可以看出,高通将AI作为战略核心,布局既久又广,且已形成相对完整的行业生态。 一般来说,供应链核心技术公司推出某项技术后,头部
    的头像 发表于 11-09 14:17 271次阅读
    骁龙证明自己成为面向生成式<b class='flag-5'>AI</b>的首选平台