0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI芯片与传统芯片有什么区别

Wildesbeast 来源:知乎@汪鹏 作者:人人都是极客 2020-02-12 15:58 次阅读

所谓的AI芯片,一般是指针对AI算法ASIC(专用芯片)。

传统的CPUGPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。

比如,自动驾驶需要识别道路行人红绿灯等状况,但是如果是当前的CPU去算,那么估计车翻到河里了还没发现前方是河,这是速度慢,时间就是生命。如果用GPU,的确速度要快得多,但是,功耗大,汽车的电池估计无法长时间支撑正常使用,而且,老黄家的GPU巨贵,经常单块上万,普通消费者也用不起,还经常缺货。另外,GPU因为不是专门针对AI算法开发的ASIC,所以,说到底,速度还没到极限,还有提升空间。而类似智能驾驶这样的领域,必须快!在手机终端,可以自行人脸识别、语音识别等AI应用,这个必须功耗低,所以GPU OUT!

所以,开发ASIC就成了必然。

说说,为什么需要AI芯片。

AI算法,在图像识别等领域,常用的是CNN卷积网络,语音识别、自然语言处理等领域,主要是RNN,这是两类有区别的算法。但是,他们本质上,都是矩阵或vector的乘法、加法,然后配合一些除法、指数等算法。

一个成熟的AI算法,比如YOLO-V3,就是大量的卷积、残差网络、全连接等类型的计算,本质是乘法和加法。对于YOLO-V3来说,如果确定了具体的输入图形尺寸,那么总的乘法加法计算次数是确定的。比如一万亿次。(真实的情况比这个大得多的多)

那么要快速执行一次YOLO-V3,就必须执行完一万亿次的加法乘法次数。

这个时候就来看了,比如IBM的POWER8,最先进的服务器用超标量CPU之一,4GHz,SIMD,128bit,假设是处理16bit的数据,那就是8个数,那么一个周期,最多执行8个乘加计算。一次最多执行16个操作。这还是理论上,其实是不大可能的。

那么CPU一秒钟的巅峰计算次数=16X4Gops=64Gops。

这样,可以算算CPU计算一次的时间了。

同样的,换成GPU算算,也能知道执行时间。因为对GPU内部结构不熟,所以不做具体分析。

再来说说AI芯片。比如大名鼎鼎的谷歌的TPU1。

TPU1,大约700M Hz,有256X256尺寸的脉动阵列,如下图所示。一共256X256=64K个乘加单元,每个单元一次可执行一个乘法和一个加法。那就是128K个操作。(乘法算一个,加法再算一个)

另外,除了脉动阵列,还有其他模块,比如激活等,这些里面也有乘法、加法等。

所以,看看TPU1一秒钟的巅峰计算次数至少是=128K X 700MHz=89600Gops=大约90Tops。

对比一下CPU与TPU1,会发现计算能力有几个数量级的差距,这就是为啥说CPU慢。

当然,以上的数据都是完全最理想的理论值,实际情况,能够达到5%吧。因为,芯片上的存储不够大,所以数据会存储在DRAM中,从DRAM取数据很慢的,所以,乘法逻辑往往要等待。另外,AI算法有许多层网络组成,必须一层一层的算,所以,在切换层的时候,乘法逻辑又是休息的,所以,诸多因素造成了实际的芯片并不能达到利润的计算峰值,而且差距还极大。

可能有人要说,搞研究慢一点也能将就用。

目前来看,神经网络的尺寸是越来越大,参数越来越多,遇到大型NN模型,训练需要花几周甚至一两个月的时候,你会耐心等待么?突然断电,一切重来?(曾经动手训练一个写小说的AI,然后,一次训练(50轮)需要大约一天一夜还多,记得如果第一天早上开始训练,需要到第二天下午才可能完成,这还是模型比较简单,数据只有几万条的小模型呀。)

修改了模型,需要几个星期才能知道对错,确定等得起?

突然有了TPU,然后你发现,吃个午饭回来就好了,参数优化一下,继续跑,多么爽!

计算速度快,才能迅速反复迭代,研发出更强的AI模型。速度就是金钱。

GPU的内核结构不清楚,所以就不比较了。肯定的是,GPU还是比较快的,至少比CPU快得多,所以目前大多数都用GPU,这玩意随便一个都能价格轻松上万,太贵,而且,功耗高,经常缺货。不适合数据中心大量使用。

总的来说,CPU与GPU并不是AI专用芯片,为了实现其他功能,内部有大量其他逻辑,而这些逻辑对于目前的AI算法来说是完全用不上的,所以,自然造成CPU与GPU并不能达到最优的性价比。

谷歌花钱研发TPU,而且目前已经出了TPU3,用得还挺欢,都开始支持谷歌云计算服务了,貌似6点几美元每小时吧,不记得单位了,懒得查.

可见,谷歌觉得很有必要自己研发TPU。

就酱。

看到有答案点我名说不应该用CPU做对比,这个锅我不背。

做一点解释。

目前在图像识别、语音识别、自然语言处理等领域,精度最高的算法就是基于深度学习的,传统的机器学习的计算精度已经被超越,目前应用最广的算法,估计非深度学习莫属,而且,传统机器学习的计算量与 深度学习比起来少很多,所以,我讨论AI芯片时就针对计算量特别大的深度学习而言。毕竟,计算量小的算法,说实话,CPU已经很快了。而且,CPU适合执行调度复杂的算法,这一点是GPU与AI芯片都做不到的,所以他们三者只是针对不同的应用场景而已,都有各自的主场。

至于为何用了CPU做对比?

而没有具体说GPU。是因为,我说了,我目前没有系统查看过GPU的论文,不了解GPU的情况,故不做分析。因为积累的缘故,比较熟悉超标量CPU,所以就用熟悉的CPU做详细比较。而且,小型的网络,完全可以用CPU去训练,没啥大问题,最多慢一点。只要不是太大的网络模型。

那些AI算法公司,比如旷世、商汤等,他们的模型很大,自然也不是一块GPU就能搞定的。GPU的算力也是很有限的。


至于说CPU是串行,GPU是并行。

没错,但是不全面。只说说CPU串行。这位网友估计对CPU没有非常深入的理解。我的回答中举的CPU是IBM的POWER8,百度一下就知道,这是超标量的服务器用CPU,目前来看,性能已经是非常顶级的了,主频4GHZ。不知是否注意到我说了这是SIMD?这个SIMD,就代表他可以同时执行多条同样的指令,这就是并行,而不是串行。单个数据是128bit的,如果是16bit的精度,那么一周期理论上最多可以计算八组数据的乘法或加法,或者乘加。这还不叫并行?只是并行的程度没有GPU那么厉害而已,但是,这也是并行。


不知道为啥就不能用CPU来比较算力?

有评论很推崇GPU。说用CPU来做比较,不合适。

拜托,GPU本来是从CPU中分离出来专门处理图像计算的,也就是说,GPU是专门处理图像计算的。包括各种特效的显示。这也是GPU的天生的缺陷,GPU更加针对图像的渲染等计算算法。但是,这些算法,与深度学习的算法还是有比较大的区别,而我的回答里提到的AI芯片,比如TPU,这个是专门针对CNN等典型深度学习算法而开发的。另外,寒武纪的NPU,也是专门针对神经网络的,与TPU类似。

谷歌的TPU,寒武纪的DianNao,这些AI芯片刚出道的时候,就是用CPU/GPU来对比的。

无图无真相,是吧?

看看,谷歌TPU论文的摘要直接对比了TPU1与CPU/GPU的性能比较结果,见红色框:

看不清?

没事,放大。

这就是摘要中介绍的TPU1与CPU/GPU的性能对比。

再来看看寒武纪DianNao的paper,摘要中直接就是DianNao与CPU的性能的比较,见红色框:

回顾一下历史。

上个世纪出现神经网络的时候,那一定是用CPU计算的。

比特币刚出来,那也是用CPU在挖。目前已经进化成ASIC矿机了。比特大陆了解一下。

从2006年开始开启的深度学习热潮,CPU与GPU都能计算,发现GPU速度更快,但是贵啊,更多用的是CPU,而且,那时候GPU的CUDA可还不怎么样,后来,随着NN模型越来越大,GPU的优势越来越明显,CUDA也越来越6,目前就成了GPU的专场。

寒武纪2014年的DianNao(NPU)比CPU快,而且更加节能。ASIC的优势很明显啊。这也是为啥要开发ASIC的理由。

至于说很多公司的方案是可编程的,也就是大多数与FPGA配合。你说的是商汤、深鉴么?的确,他们发表的论文,就是基于FPGA的。

这些创业公司,他们更多研究的是算法,至于芯片,还不是重点,另外,他们暂时还没有那个精力与实力。FPGA非常灵活,成本不高,可以很快实现架构设计原型,所以他们自然会选择基于FPGA的方案。不过,最近他们都大力融资,官网也在招聘芯片设计岗位,所以,应该也在涉足ASIC研发了。

如果以FPGA为代表的可编程方案真的有巨大的商业价值,那他们何必砸钱去做ASIC?

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50309

    浏览量

    421451
  • asic
    +关注

    关注

    34

    文章

    1184

    浏览量

    120280
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10816

    浏览量

    210992
  • AI
    AI
    +关注

    关注

    87

    文章

    29952

    浏览量

    268253
收藏 人收藏

    评论

    相关推荐

    DAC芯片什么区别

    我想选一款16位、4通道DAC芯片,在选定的一些芯片中,发现Architecture区别,分别是R-2R和Sting,请问它们
    发表于 06-18 10:16

    esp32cam上使用了两种不同的芯片会有什么区别

    esp32cam上使用了两种不同的芯片。一张印有 ai-thinker 的照片,另一张我不知道。区别/
    发表于 03-01 06:07

    AI芯片与其他芯片什么区别

    所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI
    的头像 发表于 07-25 14:58 3.4w次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>芯片</b>与其他<b class='flag-5'>芯片</b><b class='flag-5'>有</b><b class='flag-5'>什么区别</b>?

    AI芯片的架构和传统芯片什么不同?

    所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI
    的头像 发表于 08-01 10:34 1.1w次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>芯片</b>的架构和<b class='flag-5'>传统</b><b class='flag-5'>芯片</b><b class='flag-5'>有</b>什么不同?

    AI芯片传统芯片到底什么区别

    所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。传统的CPU、GPU都可以拿来执行AI
    的头像 发表于 12-21 10:11 8509次阅读

    dsp芯片是什么_dsp芯片和通用微处理器什么区别

    对于dsp芯片很多人都会比较陌生,它主要运用在信号处理、图像处理、声音语言等多个场所。那么dsp芯片到底是什么呢?它和通用微处理器什么不同。接下来小编就简单的给大家介绍一下dsp芯片
    发表于 05-11 12:11 1.4w次阅读

    智能照明和传统照明的系统到底什么区别

    电子发烧友网站提供智能照明和传统照明的系统到底什么区别资料免费下载
    发表于 11-26 06:41 26次下载

    半导体和芯片什么区别

    半导体和芯片什么区别 由于现在全球缺芯,各个行业都出现了缺芯情况,现在半导体和芯片都是超级火热的话题,那么半导体和芯片
    的头像 发表于 08-07 17:44 11.5w次阅读

    什么是合封芯片?合封芯片和单封什么区别

    芯片是半导体元件产品的统称,也被称作为集成线路、微电路、微芯片芯片是由硅片制造出来的。而芯片的封装是芯片制造的一个重要过程,今天为大家科普
    的头像 发表于 10-22 10:20 3127次阅读

    AI芯片和SoC芯片区别

    AI芯片和SoC芯片都是常见的芯片类型,但它们之间有些区别。本文将介绍AI
    的头像 发表于 08-07 17:38 3910次阅读

    ai芯片和cpu区别

    ai芯片和cpu区别AI芯片和CPU
    的头像 发表于 08-08 18:00 6865次阅读

    ai芯片和gpu芯片什么区别

    ai芯片和gpu芯片什么区别AI芯片和GPU
    的头像 发表于 08-08 18:02 5397次阅读

    ai芯片传统芯片区别

    ai芯片传统芯片区别 随着人工智能的发展和应用的普及,越来越多的企业和科研机构开始研发人工智能芯片
    的头像 发表于 08-08 19:02 4757次阅读

    人工智能芯片和普通芯片区别

    AI芯片)作为支持这些功能的核心组件之一,被广泛应用于各种领域。那么,AI芯片和普通芯片
    的头像 发表于 08-15 16:06 8702次阅读

    FPC与传统PCB到底什么区别.zip

    FPC与传统PCB到底什么区别
    发表于 03-01 15:37 4次下载