0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

看人工智能在能源领域的应用

倩倩 来源:全国能源信息平台 2020-02-17 07:01 次阅读

人工智能AI)技术已经被广泛地应用于能源领域中的系统建模、预测、控制和优化等方面。

能源是人类社会的中心,并推动着技术和整体人类福祉的发展。然而,随着全球人口的稳定增长(预计到2050年将达到近100亿),能源供应必须与需求保持一致。因此,关于资源的决策和管理已变得至关重要,因为如果决策不当,可能会产生巨大的经济影响或导致能源短缺。

人工智能(Artificial Intelligence,AI)技术具有高效解决复杂问题的突出优点,在可再生能源需求逐渐增加的今天,能源系统对信息的实时性要求越来越高,同时需要灵活的解决方案,因此人工智能技术在能源互联网中具有广泛的应用前景。在能源行业中,数据收集器和传感器的广泛使用收集了大量有关能耗的数据,这些数据可以帮助理解,建模和预测物理行为以及人类对能源的影响,因此,目前人工智能技术已经被广泛地应用于能源领域中的系统建模、预测、控制和优化等方面。

清华大学中国科技政策研究中心在其发布的《中国人工智能发展2018》报告中,通过对德温特全球专利权人的专利公开数据进行分析,发现AI领域中Top10专利权人分布如下图:

图1:AI领域中Top10专利权人分布(单位:件)(来源:参考资料1)

国家电网公司作为唯一一家中国企业在AI领域中与国际竞争对手在专利布局中占有一席之地,也说明AI技术在能源领域的巨大应用潜力。国家电网公司的AI相关发明技术主要应用在电网控制、配电网、风电站、新能源等领域。

当然,在整个电力系统中,除了电源侧和输电侧以外,AI在用户侧的应用也十分流行,例如负荷预测、需求侧管理和用户分类等等。下图描述了一个以新能源为电源的微网中AI的典型应用。AI技术,如机器学习、模糊逻辑、自然语言处理、大数据技术等,以及一些混合AI方法为电力系统的设计、模拟、预测、控制、优化、评估、监测、故障诊断、需求侧管理等都提供了强大的工具。

图2:AI在电力能源领域的应用(来源:参考资料2)

能源领域中常用的人工智能技术

机器学习

机器学习理论主要是设计和分析一些让计算机可以主动“学习”的算法。在能源行业可应用在实现电网工程的可视化,辅助电厂优化电网内部设置等。自然语言处理自然语言处理让计算机把输入的语言数据变成有意思的符号和关系,然后进行再处理。在能源行业,自然语言处理可以用在自动获取能源数据,为进一步能情况分析做准备。

大数据技术

大数据技术指对各种来源的大量非结构化或者结构化数据进行分析,利用人工智能从数据中挖掘信息,帮助决策。在能源行业中,对电厂的管理与运营是大数据技术的例子之一。

深度学习

深度学习使用包含复杂结构或多重非线性变换购置的多个处理层对数据进行高层抽象。在能源行业中,利用深度学习优化钻井效率,可以提高20%的生产效率并减少40%的成本。

计算机视觉

计算机视觉是研究如何使机器实现人眼“看“的功能的技术。计算机视觉中的图像识别在能源行业可以应用在能源勘探,通过收集的信息描绘地层结构等。

模糊逻辑模糊逻辑是建立在多值逻辑基础上的人工智能基础理论,运用模糊集合的方法来研究模糊性思维、语言形式及其规律的科学。对于模型未知或不能确定的描述系统,模糊逻辑可以应用模糊集合和模糊规则进行推理,实行模糊综合判断。在能源行业,模糊逻辑可以用在处理不完整的油气田地质数据,从而优化勘测模型,推理出更精细的地质构造情况。

人工智能在能源领域的应用方向

预测预测是人工智能在能源领域最常见的应用,包括能源经济方面的预测如负荷预测和电价预测,以及发电输出功率预测。在电源侧,针对风能、太阳能、水能等可再生能源受天气条件影响较大的特点,可以采用深度置信网络(DBN)、集成学习以及条件变分编码器等技术,利用其在多层次网络训练、多分类综合决策、特征自主提取与学习、强大泛化能力等方面的优势,基于调控大数据(天气、环境、大气条件、电站地理位置和电网历史运行数据等),整合多种预测模型和算法,采用无监督/半监督的自主学习方式分析和发现数据内部规律、多种因素间的耦合关联关,对可再生能源发电进行预测,提高可再生能源的预测精度。在用户侧,传统上通常使用工程方法和统计方法进行负荷预测。但这些方法基本上是线性模型,而负荷和功率模式通常是外生变量的非线性函数。因此统计方法在预测的准确性和灵活性上具有不足之处。随着ANN预测方法的发展,深度学习技术有望通过更高层次的抽象来提高预测精度。此外模糊逻辑、遗传算法和SVM等也广泛地应用到了预测中,这些技术与深度学习的结合应用得到了很高的预测精度。南网总调自动化处技术专家梁寿愚早在2015年就自行学习AI,基于谷歌旗下的TensorFlow开源框架,摸索AI与电网调度业务的结合,实现基于AI的负荷预测模型,取代原来几个小时的人工测算,日前预测准确率高达97%。

故障检测与诊断AI技术在电力系统故障诊断方面发挥着关键作用。主要使用的AI技术包括:模糊逻辑模型、广义回归神经网络方法、多核SVM、免疫神经网络、分布式机器学习、ANN、神经模糊和小波神经网络、隐马尔可夫模型。

需求侧管理

需求侧管理是智能电网中重要的功能之一,可以提高智能电网的可持续性,并降低整体运营成本和碳排放水平。传统能源管理系统中现有的需求侧管理策略大多采用系统特定的技术和算法。此外,现有的策略只能处理有限数量的有限类型的可控负载。隐马尔可夫模型、聚类算法、遗传算法、机器学习等AI技术在负荷辨识、多用户协调控制、错峰控制等方面有很好的应用。

人工智能技术在能源领域中的应用已经获得了良好的发展,虽然在我国这方面的应用研究才刚刚进入轨道,但我国能源行业的持续发展、电力系统数据总量的不断增加以及市场竞争的影响和加大,都为人工智能技术的应用提供了广阔

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2548

    文章

    50664

    浏览量

    751885
  • 人工智能
    +关注

    关注

    1791

    文章

    46841

    浏览量

    237524
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132402
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    、连接主义和深度学习等不同的阶段。目前,人工智能已经广泛应用于各种领域,如自然语言处理、计算机视觉、智能推荐等。 嵌入式系统和人工智能在许多方面都存在密切的关联性。首先,嵌入式系统可
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    生成式人工智能在教育中的应用

    生成式人工智能在教育中的应用日益广泛,为教育领域带来了诸多变革和创新。以下是对生成式人工智能在教育中的几个主要应用方面的详细阐述:
    的头像 发表于 09-16 16:07 618次阅读

    智能制造与人工智能的区别

    智能制造与人工智能在定义、技术组成、应用领域以及发展重点等方面存在明显的区别。
    的头像 发表于 09-15 14:27 601次阅读

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    活的世界? 编辑推荐 《AI for Science:人工智能驱动科学创新》聚焦于人工智能与材料科学、生命科学、电子科学、能源科学、环境科学五大领域的交叉融合,通过深入浅出的语言和诸
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    AI人工智能在能源领域的创新应用

    AI人工智能在能源领域的应用不仅推动了技术的创新和发展,还促进了整个汽车产业的绿色转型和可持续发展。未来,随着技术的不断进步和应用的深化,AI将在新能源
    的头像 发表于 07-21 09:50 712次阅读

    人工智能在军事方面的应用

    智慧华盛恒辉人工智能在军事方面的应用广泛且深入,主要包括以下几个方面: 智慧华盛恒辉一、作战效能提升 自动目标识别与跟踪: 人工智能系统能够在复杂环境中准确识别和跟踪目标,提高作战效率。利用图像识别
    的头像 发表于 07-16 09:52 517次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域
    发表于 02-26 10:17

    人工智能在工业领域的作用

    本文是系列的第一部分,我们将探讨人工智能在工业领域的作用。
    的头像 发表于 12-21 11:07 840次阅读