使用长电缆或电容夹头的测试设置会增加测试仪器输出的电容,导致测量结果不准确或不稳定。当输出或扫描直流电压并测量异常灵敏的低电流时,能观察到这种效应。为了应对这些挑战,泰克为吉时利4200A-SCS参数分析仪引入了两个新的源测量单元(SMU)模块,即使在测试连接电容较高的应用中,该模块也可以进行稳定的低电流测量。
节能的要求越来越高,这就需要越来越低的电流,这是一个日益严峻的测量挑战,如测试智能手机或平板电脑的大型LCD面板。高电容测试连接可能会出现问题的应用,还包括:探卡上的纳米FETI-V测量,使用长电缆的MOSFET的传输特性,开关矩阵的FET测试以及电容泄漏测量。
支持1000倍以上的电容
与其他灵敏SMU相比,新的吉时利4201中功率SMU和4211高功率SMU(带有可选的4200-PA前置放大器)提升了最大负载电容。在最低支持电流范围内,4201-SMU和4211-SMU可以提供和测量的系统电容是目前SMU容量的1000倍。例如,如果电流在1至100pA之间,则新的吉时利模块可以处理高达1μF(微法拉)的负载。相比之下,在不降低测量精度的情况下,同类产品的最大负载电容在该电流水平上的承受能力仅为1,000pF。
对于面临这些问题的客户,新模块是很宝贵的补充,不仅节省排除故障的时间,还可以节省开支。当测试工程师或研究人员发现测量错误时,他们首先需要追踪其来源。这本身可能需要花费大量时间,并且他们还需要先探索许多可能的原因,然后才能缩小范围。一旦发现原因是系统电容,就必须调整测试参数,电缆长度,甚至重新安排测试设置。这不是理想选择。
实际中,新的SMU模块是如何工作的呢?让我们来看一下平板显示器测试过程中和纳米FET研究中的几个关键应用。
示例1:平板显示器上的OLED像素驱动器电路
OLED像素驱动器电路印刷在平板显示器上的OLED器件旁边。通常,它们的直流特性是通过将SMU开关矩阵连接起来,然后使用12-16m长的三轴电缆连接到LCD探针台上来测量的。由于需要连接很长的电缆。因此,测试中经常出现不稳定的低电流。这种不稳定性在OLED驱动电路的饱和曲线(橙色曲线)和线性曲线(蓝色曲线)中很明显,当使用传统SMU连接DUT进行测量时,结果如下图所示。
图1:使用传统SMU测量的OLED的饱和度和线性I-V曲线。
但是,当在DUT的漏极端子上使用4211-SMU重复进行这些I-V测量时,I-V曲线将保持稳定,如下所示。问题解决了。
图2:使用新型4211-SMU测量的OLED的饱和度和线性I-V曲线。
示例2:具有公共栅极和探卡电容的纳米FET
纳米FET和2DFET测试时器件的一个端子通过探针台的卡盘与SMU连接。卡盘的电容可能高达几个纳米级,在某些情况下,有必要使用卡盘顶部的导电垫与栅极接触。同时,同轴电缆也会增加额外的电容。
为了评估新的SMU模块,将两个传统的SMU连接到2DFET的栅极和漏极,从而产生下面的嘈杂的Id-Vg磁滞曲线。
图3:使用传统SMU测量的2DFET的噪声Id-Vg磁滞曲线。
但是,当两个4211-SMU连接到同一设备的栅极和漏极时,产生的磁滞曲线平滑且稳定,如下所示,这解决了研究人员可能需要克服的主要障碍。
图4:用两个4211-SMU测量的平滑且稳定的Id-Vg磁滞曲线。
订购4201-SMU和4211-SMU并预先配置4200A-SCS,以配置全参数分析解决方案或对现有设备进行现场升级。无需将设备发送到服务中心即可轻松地在现场完成升级,从而可以节省数周的停机时间。
-
测试
+关注
关注
8文章
5302浏览量
126638 -
OLED
+关注
关注
119文章
6200浏览量
224181 -
SMU模块
+关注
关注
0文章
3浏览量
1340
发布评论请先 登录
相关推荐
评论