0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微机电系统的三种材料和加工技术

汽车玩家 来源:传感器专家网 作者:传感器专家网 2020-03-07 11:19 次阅读

微机电系统(Microelectromechanical Systems,缩写为 MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。微机电系统在日本被称作微机械(micromachines),在欧洲被称作微系统技术(Micro Systems Technology,MST)。

微机电设备的尺寸通常在20微米到一毫米之间,它们内部通常包含一个微处理器和若干获取外界信息的微型传感器。微机电系统的加工技术由半导体加工技术改造而来,使其可以应用到实际当中,而后者一般用来制造电子设备。微机电系统有多种原材料和制造技术,根据应用、市场等性能需求的不同进行选择。

一、MEMS的材料

1、硅

硅是用来制造集成电路的主要原材料。由于在电子工业中已经有许多实用硅制造极小的结构的经验,硅也是微机电系统非常常用的原材料。硅的物质特性也有一定的优点。单晶体的硅遵守胡克定律,几乎没有弹性滞后的现象,因此几乎不耗能,其运动特性非常可靠。此外硅不易折断,因此非常可靠,其使用周期可以达到上兆次。

一般微机电系统的生产方式是在基质上堆积物质层,然后使用平板印刷和蚀刻的方法来让它形成各种需要的结构。

2、高分子材料

虽然电子工业对硅加工的经验是非常丰富和宝贵的,并提供了很大的经济性,但是纯的硅依然是非常昂贵的。高分子材料非常便宜,而且其性能各种各样。使用注射成形、压花、立体光固化成形等技术也可以使用高分子材料制造微机电系统,这样的系统尤其有利于微液体应用,比如可携测血设备等。

3、金属

金属也可以用来制造微机电系统。虽然比起硅来金属缺乏其良好的机械特性,但是在金属的适用范围内它非常可靠。

二、MEMS加工技术

①、传统机械加工方法

传统机械加工方法指利用大机器制造小机器 ,再利用小机器制造微机器 。可以用于加工一些在特殊场合应用的微机械装置 ,例如微型机械手、 微型工作台等。

传统机械加工方法以日本为代表 ,日本研究 MEMS的重点是超精密机械加工 ,因此他们更多的是将传统机械加工进行微型化 。

此加工方法可以分为两大类:超精密机械加工及特种微细加工。超精密机械加工以金属为加工对象,用硬度高于加工对象的工具,将对象材料进行切削加工,所得的三维结构尺寸可在0.01mm以下。此技术包括钻石刀具微切削加工、微钻孔加工、微铣削加工及微磨削与研磨加工等。

特种微细加工技术是通过加工能量的直接作用,实现小至逐个分子或原子的切削加工。特种加工是利用电能、热能、光能、声能及化学能等能量形式。常用的加工方法有:电火花加工、超声波加工、电子束加工、激光加工、离子束加工和电解加工等。超精密机械加工和特种微细加工技术的加工精度已达微米、亚微米级,可以批量制作模数仅为0.02左右的齿轮等微机械元件,以及其它加工方法无法制造的复杂微结构器件。

②、硅基MEMS技术

以美国为代表的硅基MEMS技术是利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件。这种方法可与传统的IC工艺兼容,并适合廉价批量生产,已成为目前的硅基MEMS技术主流。

当前硅基微加工技术可分为体微加工技术、表面微加工技术。

体微加工技术:

体微加工技术是对硅的衬底进行加工的技术。一般 采用各向异性化学腐蚀 ,利用单晶硅的不同晶向的腐蚀速率存在各向异性的特点而进行腐蚀,来制作不同的微机械结 构或微机械零件,其主要特点是硅的腐蚀速率和硅的晶向、搀杂浓度及外加电位有关。

另一种常用技术为电化学腐蚀 , 现已发展为电化学自停止腐蚀 ,它主要用于硅的腐 蚀以制备薄面均匀的硅膜。利用此技术可以制造出MEMS的精密三维结构。

体微加工技术主要通过 对硅的深腐蚀和硅片的整体键合来实现 ,能够将几 何尺寸控制在微米级。由于各向异性化学腐蚀可以 对大硅片进行 ,使得 MEMS 器件可以高精度地批量 生产 ,同时又消除了研磨加工所带来的残余机械应 力 ,提高了 MEMS 器件的稳定性和成品率。

表面微加工技术:

表面微加工技术是在硅片正面上形成薄膜并按一定 要求对薄膜进行加工形成微结构的技术 ,全部加工仅涉及到硅片正面的薄膜。是在20世纪80年代由美国加州大学Berkeley分校开发出来的,它以多晶硅为结构层,二氧化硅为牺牲层。表面微加工技术与集成电路技术最为相似,其主要特点是在“薄膜+淀积”的基础上,利用光刻、腐蚀等IC常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单元,获得可动的二维或三维结构。

用这种技术可以淀积二 氧化硅膜、氮化硅膜和多晶硅膜 ;用蒸发镀膜和溅射 镀膜可以制备铝、钨、钛、镍等金属膜 ;薄膜的加工一 般采用光刻技术 ,如紫外线光刻、X 射线光刻、电子 束光刻和离子束光刻。通过光刻将设计好的微机械 结构图转移到硅片上 ,再用等离子体腐蚀、反应离子 腐蚀等工艺来腐蚀多晶硅膜、氧化硅膜以及各种金 属膜 ,以形成微机械结构。

这一技术避免了体微加工所要求的双面对准、背面腐蚀等问题 ,与集成电路 的工艺兼容,且工艺成熟,可以在单个直径为几十毫米的单晶硅基片上批量生成数百个MEMS装置。

③、深层刻蚀技术

深层刻蚀技术指深层反应离子向硅芯片内部刻蚀,刻蚀到芯片内部的一个牺牲层,并在刻蚀完成后被腐蚀掉,这样本来埋在芯片内部的结构就可以自由运动。

深层刻蚀技术属于微机械加工方法 LIGA 的一种 ,LIGA 方 法是指采用同步 X 射线深层光刻、微电铸制模和注 塑复制等主要工艺步骤组成的一种综合性微机械加 工技术。

利用LIGA技术可以加工各种金属、塑料和陶瓷等材料,得到大深宽比的精细结构,其加工深度可达几百微米。

LIGA技术与其它立体微加工技术相比有以下特点:

可制作高度达数百至1000μm,深宽比可大于200,侧壁平行偏离在亚微米范围内的三维立体微结构;

对微结构的横向形状没有限制,横向尺寸可以小到0.5μm,精度可达0.1μm;

用材广泛,金属、合金、陶瓷、玻璃和聚合物都可以作为LIGA的加工对象;

与微电铸、铸塑巧妙结合可实现大批量复制生产,成本低。

LIGA的主要工艺步骤如下:在经过X光掩模制版和X光深度光刻后,进行微电铸,制造出微复制模具,并用它来进行微复制工艺和二次微电铸,再利用微铸塑技术进行微器件的大批量生产。

由于LIGA所要求的同步X射线源比较昂贵,所以在LIGA的基础上产生了准LIGA技术,它是用紫外光源代替同步X射线源,虽然不能达到LIGA加工的工艺性能,但也能满足微细加工中的许多要求。而由上海交通大学和北京大学联合开发、具有独立知识产权的DEM技术,也是LIGA技术中的一种。该技术采用感应耦合等离子体深层刻蚀工艺来代替同步辐射X光深层光刻,然后进行常规的微电铸和微复制工艺,该技术因不需要昂贵的同步辐射X光源和特制的X光掩摸板而具有广泛的应用前景。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51037

    浏览量

    753085
  • mems
    +关注

    关注

    129

    文章

    3924

    浏览量

    190585
  • 微机电系统
    +关注

    关注

    2

    文章

    130

    浏览量

    23792
收藏 人收藏

    评论

    相关推荐

    安泰超声功率放大器在MEMS微机电系统中的应用

    MEMS即微机电系统(Micro Electromechanical System),是一在微米级别设计的微型机械系统,包括微传感器、微执行器、信号处理和控制电路等组成部分。MEMS
    的头像 发表于 12-17 10:36 89次阅读
    安泰超声功率放大器在MEMS<b class='flag-5'>微机电</b><b class='flag-5'>系统</b>中的应用

    精密与超精密加工技术的发展趋势

    精密与超精密加工技术的起源可以追溯到原始社会。在那个时代,原始人类通过打磨石器制作出具有锋利边缘和特定形状的工具,这被认为是最早的手工研磨工艺的雏形。进入青铜器时代后,制作光滑表面的铜镜逐渐成为一
    的头像 发表于 12-05 16:22 206次阅读

    SiC单晶衬底加工技术的工艺流程

    SiC单晶是一硬而脆的材料,切片加工难度大,磨削精度要求高,因此晶圆制造是一个长时间且难度较高的过程。本文介绍了几种SiC单晶的切割加工技术以及近年来新出现的晶圆制备方法。
    的头像 发表于 11-14 14:49 317次阅读
    SiC单晶衬底<b class='flag-5'>加工技术</b>的工艺流程

    风华贴片电容的三种常规材料

    风华贴片电容的三种常规材料主要包括 NPO(COG)、X7R(X5R)和Y5V ,它们的主要区别在于填充介质的不同,这导致了电容器在容量、介质损耗、容量稳定性等方面的差异。以下是关于这三种材料
    的头像 发表于 08-29 15:50 412次阅读

    大研科技激光锡球焊接:微机电产品封装的技术革新

    大研科技的激光锡球焊接技术微机电系统(MEMS)封装提供了一高效、环保的解决方案,满足了微电子行业对微型化和高性能的不断追求,推动了智能制造的创新和发展。
    的头像 发表于 07-16 16:23 2701次阅读
    大研科技激光锡球焊接:<b class='flag-5'>微机电</b>产品封装的<b class='flag-5'>技术</b>革新

    轧辊激光熔覆修复加工技术

    ,还会对产品质量产生不良影响。因此,轧辊修复加工技术的研究与应用具有重要意义 一、轧辊激光熔覆修复加工技术原理 激光熔覆修复加工技术是一利用高能密度激光束作为热源,在轧辊表面熔覆一层
    的头像 发表于 07-03 15:05 410次阅读
    轧辊激光熔覆修复<b class='flag-5'>加工技术</b>

    基于微机电系统的智能手表

    微机电系统采用的是梳状驱动式致动器。要理解其工作原理,可以设想两个梳齿间隔很大的梳子,它们面对面摆放,梳齿交错。
    的头像 发表于 04-28 11:18 628次阅读

    深圳恒兴隆机电|高光玻璃电主轴:高效精密加工的新选择...

    玻璃电主轴的优势1、高精度加工:高光玻璃电主轴采用先进的控制系统和精密的机械加工技术,能够实现微米级的加工精度。这对于需要高精度玻璃制品的行业,如光学、电子等,具有重要意义;2、高效率
    发表于 04-22 10:48

    深圳恒兴隆机电|加工中心电主轴的原理与工作方式.

    伺服电机或直流无刷电机作为动力源。驱动电机通过传动系统转化为工具的旋转运动,实现对工件的切削。今天,跟着深圳恒兴隆机电来了解加工中心电主轴的详情吧! 一、加工中心电主轴的结构1、电机:
    发表于 04-07 10:07

    机器人激光焊或是下一个汽车制造加工技术的引爆点!

    壹晨机器人激光焊技术 图1 汽车行业中的激光加工技术 1,激光切割技术激光切割也是使用频率最多的激光应用之一。光纤激光器和二氧化碳激光器可结合标准化的二维和维切割
    的头像 发表于 03-27 10:29 321次阅读
    机器人激光焊或是下一个汽车制造<b class='flag-5'>加工技术</b>的引爆点!

    CNC主轴有哪些基础与应用?|深圳恒兴隆机电.

    CNC主轴有哪些基础与应用?|深圳恒兴隆机电CNC技术作为现代制造业的重要组成部分,旨在通过计算机控制来实现工件的精确加工。在这个系统中,主轴是核心部件之一,它直接关系到机床的性能、精
    发表于 03-11 10:54

    雕刻主轴相关知识的总结分享!|深圳恒兴隆机电a

    、具有低噪音、低振动的特点,保证雕刻机的工作环境;6、具有高速、高效的特点,适用于各种材料的雕刻和切割。 、雕刻主轴的选购要点1、功率要符合实际需求:根据需要加工材料
    发表于 02-26 10:30

    SiC晶片加工技术:探索未来电子工业的新篇章

    加工技术的优劣直接影响到器件的性能和可靠性。因此,深入了解SiC晶片加工技术的现状与趋势,对于推动SiC器件的发展具有重要意义。
    的头像 发表于 02-05 09:37 1042次阅读
    SiC晶片<b class='flag-5'>加工技术</b>:探索未来电子工业的新篇章

    激光加工技术的光源性质

    激光加工技术是利用高能量激光束与物质相互作用的特性,对金属及非金属材料进行切割、焊接、打孔、蚀刻、微调、存储、划线、清洗、热处理及表面处理等的一门加工技术
    的头像 发表于 01-26 13:42 581次阅读

    适用于超小尺寸半导体芯片的激光微纳加工技术有哪些?

    近年来,随着科技的不断发展,微纳加工技术逐渐成为半导体领域的重要工具。
    的头像 发表于 01-23 10:43 2331次阅读
    适用于超小尺寸半导体芯片的激光微纳<b class='flag-5'>加工技术</b>有哪些?