0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器视觉新突破,神经网络让图像处理速度大幅提升

独爱72H 来源:智东西 作者:智东西 2020-03-06 15:58 次阅读

(文章来源:智东西)

据外媒报道,维也纳大学的研究人员研发了一种兼顾神经网络功能的图像传感器,该传感器可以使图像分析速度相较传统方式提升近2万倍。研究人员用每个像素代表一个神经元,用每个子像素代表一个突触,从而构成神经网络。目前这项技术主要应用于特定的科学应用程序中,对于像自动驾驶中的机器视觉这样的更复杂的任务,还需要做进一步研究。

机器视觉技术通常使用人工神经网络来分析图像。在人工神经网络中,被称为“神经元”的组件会接收数据并进行协作,以解决诸如识别图像之类的问题。神经网络会反复调整其神经元之间的连接点或突触的强度,并查看所得的行为模式是否能更好地解决问题。经过一段时间调整,神经网络会找到最适合的模式和解决方案。然后,它会将找到的最佳方案设置为默认值,从而模仿人脑学习的过程。

机器视觉技术经常会遇到延迟问题,因为相机必须逐行扫描像素,然后将视频帧转换为数字信号,并将其传输到计算机中进行分析。当下随着成像速率和像素数量的增长,带宽限制使得传感器难以将所有信息快速传输到计算机中,这对于无人驾驶机器人工业制造等延迟敏感型应用影响十分明显。

维也纳大学的电气工程师Lukas Mennel和他的同事们试图通过减少中间步骤来加快机器视觉,他们创建了一个图像传感器,该图像传感器本身就构成了可以同时获取和分析图像的人工神经网络。该传感器由一个像素阵列组成,每个像素代表一个神经元。每个像素又由多个子像素组成,每个子像素代表一个突触。每个光电二极管都建立在二硒化钨层上,二硒化钨是一种对光具有可调节响应能力的二维半导体

这种可调节的光响应能力让每个光电二极管以可编程的方式对光进行记忆和响应,从而可以分别调整每个二极管的灵敏度,改变光电二极管的光响应性会改变网络中的连接强度(突触重量)。然后,科学家们基于这些光电二极管之间的链接创建了一个神经网络,通过对该网络进行训练,使其能够执行简单的计算任务。

研究人员将光电二极管排列成九个像素的正方形阵列,每个像素三个二极管。当图像投影到芯片上时,芯片会生成、读取各种二极管产生的电流。每个光电二极管都会产生与入射光强度成比例的输出电流,并且可以根据电流的基本规则进行计算。

使用神经网络的不同算法,该团队演示了两种神经形态功能。第一种是分类:它们的3×3像素阵列可以将图像分类为与三个简化字母相对应的三个类别之一,从而以纳秒为单位识别该字母。如果按比例增加阵列的大小,该神经网络还可以识别更复杂的图像。

Mennel说:“我们的图像传感器在工作时不会消耗任何电能,被检测的光子本身就可以作为电流供能。”他着重提到,“传统的机器视觉技术通常能够每秒处理100帧图像,而一些更快的系统则可以每秒处理1000帧图像,但我们的系统每秒可以处理2000万帧图像。”Mennel指出,系统运行的速度仅受电路中电子移动速度的限制。从原则上讲,这种策略的工作速度可以达到皮秒级,即数万亿分之一秒,或者比目前演示的速度快三到四个数量级。

此外,科学家们指出,原则上他们可以使用计算机模拟来训练神经网络,并借此将该神经网络传输到计算机设备上。这样的传感器可以用来做什么?Mennel说:“目前,这项技术主要应用于特定的科学应用程序中。对于像自动驾驶中的机器视觉这样的更复杂的任务,还需要做进一步研究。”

用于自动驾驶车辆和机器人技术的神经网络需要能够捕获具有广阔视野的三维动态图像和视频。当前使用的图像捕获技术通常将3D现实世界转换为2D信息,从而丢失运动信息和深度。Mennel团队的研究结果不仅可以用于视觉系统,它还可以扩展到听觉、触觉、热感或嗅觉等其他物理输入系统。此类智能系统的开发以及5G高速无线网络的到来,会让实时(低延迟)边缘计算成为可能。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100752
  • 机器视觉
    +关注

    关注

    162

    文章

    4370

    浏览量

    120305
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常
    的头像 发表于 11-15 14:53 404次阅读

    LSTM神经网络图像处理中的应用

    长短期记忆(LSTM)神经网络是一种特殊的循环神经网络(RNN),它能够学习长期依赖关系。虽然LSTM最初是为处理序列数据设计的,但近年来,它在图像
    的头像 发表于 11-13 10:12 402次阅读

    残差网络是深度神经网络

    残差网络(Residual Network,通常简称为ResNet) 是深度神经网络的一种 ,其独特的结构设计在解决深层网络训练中的梯度消失和梯度爆炸问题上取得了显著的突破,并因此成为
    的头像 发表于 07-11 18:13 1088次阅读

    全卷积神经网络的工作原理和应用

    全卷积神经网络(FCN)是深度学习领域中的一种特殊类型的神经网络结构,尤其在计算机视觉领域表现出色。它通过全局平均池化或转置卷积处理任意尺寸的输入,特别适用于像素级别的任务,如
    的头像 发表于 07-11 11:50 1125次阅读

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音
    的头像 发表于 07-11 10:25 461次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理
    的头像 发表于 07-05 09:52 577次阅读

    反向传播神经网络和bp神经网络的区别

    神经网络在许多领域都有广泛的应用,如语音识别、图像识别、自然语言处理等。然而,BP神经网络也存在一些问题,如容易陷入局部最优解、训练时间长、对初始权重敏感等。为了解决这些问题,研究者们
    的头像 发表于 07-03 11:00 799次阅读

    卷积神经网络的基本结构和工作原理

    和工作原理。 1. 引言 在深度学习领域,卷积神经网络是一种非常重要的模型。它通过模拟人类视觉系统,能够自动学习图像中的特征,从而实现对图像的识别和分类。与传统的
    的头像 发表于 07-03 09:38 627次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈
    的头像 发表于 07-02 16:47 572次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络的基
    的头像 发表于 07-02 14:45 1616次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 649次阅读

    神经网络图像识别中的应用

    随着人工智能技术的飞速发展,神经网络图像识别领域的应用日益广泛。神经网络以其强大的特征提取和分类能力,为图像识别带来了革命性的进步。本文将详细介绍
    的头像 发表于 07-01 14:19 682次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习技术
    的头像 发表于 07-01 14:16 708次阅读

    GRU是什么?GRU模型如何你的神经网络更聪明 掌握时间 掌握未来

    适用于处理图像识别和计算机视觉任务。今天要给大家介绍一位新朋友,名为GRU。 Gated RecurrentUnit(GRU)是一种用于处理序列数据的循环
    发表于 06-13 11:42 1712次阅读
    GRU是什么?GRU模型如何<b class='flag-5'>让</b>你的<b class='flag-5'>神经网络</b>更聪明 掌握时间 掌握未来

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线
    的头像 发表于 01-11 10:51 2038次阅读
    详解深度学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用