0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

将来AI能在全球性疫情爆发之前阻止传播

汽车玩家 来源:网易科技 作者:网易智能、小小 2020-03-07 11:05 次阅读

去年冬天,随着流感季节的到来,全球各地的医疗机构都在加班加点地工作。美国疾病控制与预防中心(CDC)公布的数据现实,近几个月来,已有超过18万美国人住院,另有1万人死亡,而新型冠状病毒(现已正式命名为COVID-19)也以惊人的速度在全球蔓延。

对全球范围内流感疫情爆发的担忧,甚至促使2020年移动世界大会(MWC 2020)这样的盛会,在距离开幕仅剩7天时间宣布取消。但在不久的将来,人工智能AI)增强的药物开发过程可以帮助以足够快的速度生产疫苗,并找到治疗方法,在致命病毒变异成全球性疫情之前阻止它们的传播。

传统的药物和疫苗开发方法效率极低。研究人员可以花费近十年的时间,通过密集的试验和纠错技术,对每个候选分子进行详细审查。塔夫茨药物开发研究中心2019年的一项研究现实,开发一种药物的平均成本为26亿美元,这是2003年成本的两倍多。而且,只有大约12%进入临床开发阶段的药物获得了FDA批准。

美国佐治亚大学药学和生物医学科学助理教授伊娃-玛丽亚·斯特拉克博士(Eva-Maria Strauch)指出:“你绕不过FDA,后者真的需要5到10年的时间才能批准某种药物。”然而,在机器学习系统的帮助下,生物医学研究人员基本上可以颠覆试错方法。研究人员可以使用AI来对大量候选化合物数据库进行排序,并推荐最有可能有效的治疗方法,而不是手动尝试每种潜在的治疗方法。

华盛顿大学计算生物学家S·约书亚·斯瓦米达斯(S.Joshua Swamidass)在2019年接受采访时称:“药物开发团队真正面临的许多问题,不再是人们认为他们只需在脑海中整理数据就能处理的那种问题,而是必须有某种系统方式来处理大量数据、回答问题并洞察如何做事。”

例如,口服抗真菌药物terbinafine于1996年上市,名称为拉米非,被用于治疗鹅口疮。然而,在三年内,有多人报告了服用该药物的不良反应。到2008年,已有3人死于肝中毒,另有70人患病。医生发现terbinafine的一种代谢物(TBF-A)是造成肝脏损伤的原因,但当时无法弄清楚它是如何在体内产生的。

这种代谢途径十年来始终是医学界的一个谜,直到2018年,华盛顿大学研究生Na Le Dang训练了一台关于代谢途径的AI,并让机器找出了肝脏将terbinafine分解为TBF-A的潜在途径。事实证明,创建有毒代谢物是个两步过程,而且这是个很难通过实验识别的过程,但用AI强大的模式识别能力却非常简单。

事实上,在过去的50年里,已经有450多种药物被从市场上撤下,其中许多药物像拉米菲尔一样导致肝中毒。这促使FDA推出Tox21.gov网站,这是个关于分子及其对各种重要人类蛋白质相对毒性的在线数据库。通过在这个数据集上训练AI,研究人员希望更快地确定潜在的治疗是否会导致严重的副作用。

美国先进翻译科学中心的首席信息官山姆·迈克尔(Sam Michael)帮助创建了这个数据库,他解释称:“我们过去遇到过一个挑战,本质上是,‘你能提前预测这些化合物的毒性吗?’这与我们对药物进行小分子筛查的做法正好相反。我们不想找到匹配的药物,我们只是想说‘嘿,这种(化合物)有可能是有毒的。’”

当AI不忙于解开十年来的医学谜团时,他们正在帮助设计一种更好的流感疫苗。2019年,澳大利亚弗林德斯大学的研究人员使用AI为开发一种普通流感疫苗提供增强效应,这样当人体接触到它时,就会产生更高浓度的抗体。从技术上讲,研究人员并没有“使用”AI,而是启动它,让它自己寻找用例路径,因为它完全是自己在设计疫苗。

该团队由弗林德斯大学医学教授尼古拉·彼得罗夫斯基(Nikolai Petrovsky)领导,首先建立了AI Sam(配体搜索算法)。AI Sam接受的训练是区分那些对流感有效和无效的分子。然后,研究小组训练了第二个程序,以生成数万亿个潜在的化合物结构,并将这些结构反馈给AI Sam,后者开始决定它们是否有效。

然后,研究小组挑选出排名靠前的候选化合物结构,并对他们进行了物理合成。随后的动物试验证实,增强后的疫苗比未改进的前身更有效。最初的人体试验于今年年初在美国开始,预计将持续12个月。如果审批过程顺利,增强版疫苗可能在几年内公开上市。对于只需要两年(而不是正常的5-10年)就研发出来疫苗来说,这绝非坏事。

虽然机器学习系统可以比生物研究人员更快地筛选巨大的数据集,并通过更脆弱的联系做出准确的知情估计,但在可预见的未来,人类仍将留在药物开发循环中。毕竟,人类需要生成、整理、索引、组织和标记所有的训练数据,并教授AI他们应该寻找的东西。

即使机器学习系统变得更有能力,当使用有缺陷或有偏见的数据时,它们仍然很容易产生次优结果,就像其他所有AI一样。Unlearn.AI创始人兼首席执行官查尔斯·费舍尔博士(Dr.Charles Fisher)在去年11月写道:“医学上使用的许多数据集大多来自白人、北美和欧洲人群。如果研究人员在机器学习中只是用这样的数据集,并发现某个生物标记物来预测对治疗的反应,就不能保证该生物标记物在更多样化的人群中发挥作用。”为了对抗数据偏见带来的扭曲效应,费舍尔主张使用“更大的数据集、更复杂的软件和更强大的计算机”。

另一个重要组成部分将是干净的数据,正如Kebotix首席执行官吉尔·贝克尔博士(Jill Becker)解释的那样。Kebotix是2018年成立的初创公司,它将AI与机器人技术结合起来,设计和开发奇异的材料和化学品。

贝克尔博士解释说:“我们有三个数据来源,并有能力生成我们自己的数据。我们也有自己的合成实验室来生成数据,然后使用外部数据。”这些外部数据可以来自开放期刊或订阅期刊,也可以来自专利和公司的研究伙伴。但贝克尔指出,无论来源如何,“我们都花了很多时间清理它。”

美国先进翻译科学中心的首席信息官山姆·迈克尔(Sam Michael)也称:“确保数据具有与这些模型相关联的适当元数据是绝对关键的。而且这不是随随便便就能发生的,你必须付出真正的努力。这很难,因为这个过程既昂贵又耗时。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30146

    浏览量

    268413
  • 人工智能
    +关注

    关注

    1791

    文章

    46859

    浏览量

    237561
收藏 人收藏

    评论

    相关推荐

    苹果入局,AI眼镜市场即将爆发,国内芯片产业再临机遇期

    电子发烧友网报道(文/黄山明)如果说2023年是AI大模型爆发的一年,那么2024年就是将AI与硬件相结合的智能产品爆发的一年。包括已经推出的AI
    的头像 发表于 08-15 01:00 4332次阅读

    【每天学点AI】前向传播、损失函数、反向传播

    在深度学习的领域中,前向传播、反向传播和损失函数是构建和训练神经网络模型的三个核心概念。今天,小编将通过一个简单的实例,解释这三个概念,并展示它们的作用。前向传播:神经网络的“思考”过程前向
    的头像 发表于 11-15 10:32 481次阅读
    【每天学点<b class='flag-5'>AI</b>】前向<b class='flag-5'>传播</b>、损失函数、反向<b class='flag-5'>传播</b>

    RISC-V,即将进入应用的爆发

    我们会迎来前所未见的AI软件应用,而RISC-V有望打造出下一代的AI引擎。” 达摩院院长张建锋此前在3月2024玄铁RISC-V生态大会表示,随着新型算力需求激增,RISC-V发展迎来蝶变,即将进入应用爆发期。他还表示,达摩院
    发表于 10-31 16:06

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规律。 2. 高性能
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    如何激发科学家的创新思维。AI不仅仅是工具,更是一种思维方式,它鼓励我们跳出传统框架,以数据为驱动,探索未知。这种思维方式的转变,不仅促进了科学方法的革新,也为解决全球性挑战提供了新的视角和途径
    发表于 10-14 09:12

    奕斯伟计算加入RISE全球性合作项目

    近日,奕斯伟计算加入由Linux Foundation Europe(LFEU)和RISC-V基金会共同推动成立的RISE(RISC-V Software Ecosystem)全球性合作项目,成为项目会员。
    的头像 发表于 09-30 10:43 436次阅读

    新思科技探索AI+EDA的更多可能

    芯片设计复杂的快速指数级增长给开发者带来了巨大的挑战,整个行业不仅要向埃米级发展、Muiti-Die系统和工艺节点迁移所带来的挑战,还需要应对愈加紧迫的上市时间目标、不断增加的制造测试成本以及人才短缺等问题。早在AI大热之前
    的头像 发表于 08-29 11:19 474次阅读

    AI人工智能在新能源领域的创新应用

    AI人工智能在新能源领域的应用不仅推动了技术的创新和发展,还促进了整个汽车产业的绿色转型和可持续发展。未来,随着技术的不断进步和应用的深化,AI将在新能源领域发挥更加重要的作用,为人类社会创造更加美好的明天。
    的头像 发表于 07-21 09:50 719次阅读

    平衡创新与伦理:AI时代的隐私保护和算法公平

    ,如果医生和患者都能了解AI推荐治疗方案的原因,将大大增加对技术的接受度和信任。 算法公平的保障同样不可或缺。AI系统在设计时就需要考虑到多样和包容
    发表于 07-16 15:07

    AI能在Type-C领域的应用

    AI能在Type-C领域的应用将为用户带来更加便捷、高效和智能的使用体验。随着技术的不断进步和应用场景的不断拓展,Type-C接口将在更多领域发挥重要作用,推动科技的发展和社会的进步。
    的头像 发表于 06-29 17:16 299次阅读

    NVIDIA携手初创公司引领气候AI创新

    在应对气候变化这一全球性挑战时,AI与可持续计算正成为关键工具。NVIDIA初创加速计划的成员公司Tomorrow.io、ClimaSens和north.io,均专注于极端天气预测领域,致力于推动全球气候行动。
    的头像 发表于 03-27 10:29 369次阅读

    OpenAI CEO山姆·阿尔特曼回应AI芯片投资传闻,确认全球性大笔投资

    基辛格首次询问了“7万亿美元”的相关信息,对此,Altman指出不能完全依赖媒体的报道,但他同时也强调AI领域需要全球性的大规模资金和能源投注来建立AI芯片及其基础设施堆栈,从而为全人类带来更多的服务。
    的头像 发表于 02-28 14:11 302次阅读

    全球芯片巨头暴涨6万亿 引发芯片产业热潮

    随着全球领先的芯片公司阿斯麦、AMD、英特尔和高通等迎来新的AI浪潮,市场对AI技术的需求呈现爆发性增长。
    的头像 发表于 01-26 16:42 1392次阅读

    CES 2024:AI智能大爆发,引领科技新纪元

    ,今年也不例外。而经历AI爆发的2023后,今年展商已经不约而同将主题放在了AI上。CES2024将主题定为“ALLTOGETHER.ALLON”,旨在强调通过
    的头像 发表于 01-11 11:47 1018次阅读
    CES 2024:<b class='flag-5'>AI</b>智能大<b class='flag-5'>爆发</b>,引领科技新纪元

    Spring事务传播的相关知识

    本文主要介绍了Spring事务传播的相关知识。
    的头像 发表于 01-10 09:29 403次阅读
    Spring事务<b class='flag-5'>传播</b><b class='flag-5'>性</b>的相关知识